# Copyright 2004-2005 Elemental Security, Inc. All Rights Reserved. # Licensed to PSF under a Contributor Agreement. """Parser engine for the grammar tables generated by pgen. The grammar table must be loaded first. See Parser/parser.c in the Python distribution for additional info on how this parsing engine works. """ from contextlib import contextmanager from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterator, List, Optional, Set, Tuple, Union, cast, ) from blib2to3.pgen2.grammar import Grammar from blib2to3.pytree import NL, Context, Leaf, Node, RawNode, convert # Local imports from . import grammar, token, tokenize if TYPE_CHECKING: from blib2to3.pgen2.driver import TokenProxy Results = Dict[str, NL] Convert = Callable[[Grammar, RawNode], Union[Node, Leaf]] DFA = List[List[Tuple[int, int]]] DFAS = Tuple[DFA, Dict[int, int]] def lam_sub(grammar: Grammar, node: RawNode) -> NL: assert node[3] is not None return Node(type=node[0], children=node[3], context=node[2]) # A placeholder node, used when parser is backtracking. DUMMY_NODE = (-1, None, None, None) def stack_copy( stack: List[Tuple[DFAS, int, RawNode]] ) -> List[Tuple[DFAS, int, RawNode]]: """Nodeless stack copy.""" return [(dfa, label, DUMMY_NODE) for dfa, label, _ in stack] class Recorder: def __init__(self, parser: "Parser", ilabels: List[int], context: Context) -> None: self.parser = parser self._ilabels = ilabels self.context = context # not really matter self._dead_ilabels: Set[int] = set() self._start_point = self.parser.stack self._points = {ilabel: stack_copy(self._start_point) for ilabel in ilabels} @property def ilabels(self) -> Set[int]: return self._dead_ilabels.symmetric_difference(self._ilabels) @contextmanager def switch_to(self, ilabel: int) -> Iterator[None]: with self.backtrack(): self.parser.stack = self._points[ilabel] try: yield except ParseError: self._dead_ilabels.add(ilabel) finally: self.parser.stack = self._start_point @contextmanager def backtrack(self) -> Iterator[None]: """ Use the node-level invariant ones for basic parsing operations (push/pop/shift). These still will operate on the stack; but they won't create any new nodes, or modify the contents of any other existing nodes. This saves us a ton of time when we are backtracking, since we want to restore to the initial state as quick as possible, which can only be done by having as little mutatations as possible. """ is_backtracking = self.parser.is_backtracking try: self.parser.is_backtracking = True yield finally: self.parser.is_backtracking = is_backtracking def add_token(self, tok_type: int, tok_val: str, raw: bool = False) -> None: func: Callable[..., Any] if raw: func = self.parser._addtoken else: func = self.parser.addtoken for ilabel in self.ilabels: with self.switch_to(ilabel): args = [tok_type, tok_val, self.context] if raw: args.insert(0, ilabel) func(*args) def determine_route( self, value: Optional[str] = None, force: bool = False ) -> Optional[int]: alive_ilabels = self.ilabels if len(alive_ilabels) == 0: *_, most_successful_ilabel = self._dead_ilabels raise ParseError("bad input", most_successful_ilabel, value, self.context) ilabel, *rest = alive_ilabels if force or not rest: return ilabel else: return None class ParseError(Exception): """Exception to signal the parser is stuck.""" def __init__( self, msg: str, type: Optional[int], value: Optional[str], context: Context ) -> None: Exception.__init__( self, f"{msg}: type={type!r}, value={value!r}, context={context!r}" ) self.msg = msg self.type = type self.value = value self.context = context class Parser: """Parser engine. The proper usage sequence is: p = Parser(grammar, [converter]) # create instance p.setup([start]) # prepare for parsing : if p.addtoken(...): # parse a token; may raise ParseError break root = p.rootnode # root of abstract syntax tree A Parser instance may be reused by calling setup() repeatedly. A Parser instance contains state pertaining to the current token sequence, and should not be used concurrently by different threads to parse separate token sequences. See driver.py for how to get input tokens by tokenizing a file or string. Parsing is complete when addtoken() returns True; the root of the abstract syntax tree can then be retrieved from the rootnode instance variable. When a syntax error occurs, addtoken() raises the ParseError exception. There is no error recovery; the parser cannot be used after a syntax error was reported (but it can be reinitialized by calling setup()). """ def __init__(self, grammar: Grammar, convert: Optional[Convert] = None) -> None: """Constructor. The grammar argument is a grammar.Grammar instance; see the grammar module for more information. The parser is not ready yet for parsing; you must call the setup() method to get it started. The optional convert argument is a function mapping concrete syntax tree nodes to abstract syntax tree nodes. If not given, no conversion is done and the syntax tree produced is the concrete syntax tree. If given, it must be a function of two arguments, the first being the grammar (a grammar.Grammar instance), and the second being the concrete syntax tree node to be converted. The syntax tree is converted from the bottom up. **post-note: the convert argument is ignored since for Black's usage, convert will always be blib2to3.pytree.convert. Allowing this to be dynamic hurts mypyc's ability to use early binding. These docs are left for historical and informational value. A concrete syntax tree node is a (type, value, context, nodes) tuple, where type is the node type (a token or symbol number), value is None for symbols and a string for tokens, context is None or an opaque value used for error reporting (typically a (lineno, offset) pair), and nodes is a list of children for symbols, and None for tokens. An abstract syntax tree node may be anything; this is entirely up to the converter function. """ self.grammar = grammar # See note in docstring above. TL;DR this is ignored. self.convert = convert or lam_sub self.is_backtracking = False def setup(self, proxy: "TokenProxy", start: Optional[int] = None) -> None: """Prepare for parsing. This *must* be called before starting to parse. The optional argument is an alternative start symbol; it defaults to the grammar's start symbol. You can use a Parser instance to parse any number of programs; each time you call setup() the parser is reset to an initial state determined by the (implicit or explicit) start symbol. """ if start is None: start = self.grammar.start # Each stack entry is a tuple: (dfa, state, node). # A node is a tuple: (type, value, context, children), # where children is a list of nodes or None, and context may be None. newnode: RawNode = (start, None, None, []) stackentry = (self.grammar.dfas[start], 0, newnode) self.stack: List[Tuple[DFAS, int, RawNode]] = [stackentry] self.rootnode: Optional[NL] = None self.used_names: Set[str] = set() self.proxy = proxy def addtoken(self, type: int, value: str, context: Context) -> bool: """Add a token; return True iff this is the end of the program.""" # Map from token to label ilabels = self.classify(type, value, context) assert len(ilabels) >= 1 # If we have only one state to advance, we'll directly # take it as is. if len(ilabels) == 1: [ilabel] = ilabels return self._addtoken(ilabel, type, value, context) # If there are multiple states which we can advance (only # happen under soft-keywords), then we will try all of them # in parallel and as soon as one state can reach further than # the rest, we'll choose that one. This is a pretty hacky # and hopefully temporary algorithm. # # For a more detailed explanation, check out this post: # https://tree.science/what-the-backtracking.html with self.proxy.release() as proxy: counter, force = 0, False recorder = Recorder(self, ilabels, context) recorder.add_token(type, value, raw=True) next_token_value = value while recorder.determine_route(next_token_value) is None: if not proxy.can_advance(counter): force = True break next_token_type, next_token_value, *_ = proxy.eat(counter) if next_token_type in (tokenize.COMMENT, tokenize.NL): counter += 1 continue if next_token_type == tokenize.OP: next_token_type = grammar.opmap[next_token_value] recorder.add_token(next_token_type, next_token_value) counter += 1 ilabel = cast(int, recorder.determine_route(next_token_value, force=force)) assert ilabel is not None return self._addtoken(ilabel, type, value, context) def _addtoken(self, ilabel: int, type: int, value: str, context: Context) -> bool: # Loop until the token is shifted; may raise exceptions while True: dfa, state, node = self.stack[-1] states, first = dfa arcs = states[state] # Look for a state with this label for i, newstate in arcs: t = self.grammar.labels[i][0] if t >= 256: # See if it's a symbol and if we're in its first set itsdfa = self.grammar.dfas[t] itsstates, itsfirst = itsdfa if ilabel in itsfirst: # Push a symbol self.push(t, itsdfa, newstate, context) break # To continue the outer while loop elif ilabel == i: # Look it up in the list of labels # Shift a token; we're done with it self.shift(type, value, newstate, context) # Pop while we are in an accept-only state state = newstate while states[state] == [(0, state)]: self.pop() if not self.stack: # Done parsing! return True dfa, state, node = self.stack[-1] states, first = dfa # Done with this token return False else: if (0, state) in arcs: # An accepting state, pop it and try something else self.pop() if not self.stack: # Done parsing, but another token is input raise ParseError("too much input", type, value, context) else: # No success finding a transition raise ParseError("bad input", type, value, context) def classify(self, type: int, value: str, context: Context) -> List[int]: """Turn a token into a label. (Internal) Depending on whether the value is a soft-keyword or not, this function may return multiple labels to choose from.""" if type == token.NAME: # Keep a listing of all used names self.used_names.add(value) # Check for reserved words if value in self.grammar.keywords: return [self.grammar.keywords[value]] elif value in self.grammar.soft_keywords: assert type in self.grammar.tokens return [ self.grammar.soft_keywords[value], self.grammar.tokens[type], ] ilabel = self.grammar.tokens.get(type) if ilabel is None: raise ParseError("bad token", type, value, context) return [ilabel] def shift(self, type: int, value: str, newstate: int, context: Context) -> None: """Shift a token. (Internal)""" if self.is_backtracking: dfa, state, _ = self.stack[-1] self.stack[-1] = (dfa, newstate, DUMMY_NODE) else: dfa, state, node = self.stack[-1] rawnode: RawNode = (type, value, context, None) newnode = convert(self.grammar, rawnode) assert node[-1] is not None node[-1].append(newnode) self.stack[-1] = (dfa, newstate, node) def push(self, type: int, newdfa: DFAS, newstate: int, context: Context) -> None: """Push a nonterminal. (Internal)""" if self.is_backtracking: dfa, state, _ = self.stack[-1] self.stack[-1] = (dfa, newstate, DUMMY_NODE) self.stack.append((newdfa, 0, DUMMY_NODE)) else: dfa, state, node = self.stack[-1] newnode: RawNode = (type, None, context, []) self.stack[-1] = (dfa, newstate, node) self.stack.append((newdfa, 0, newnode)) def pop(self) -> None: """Pop a nonterminal. (Internal)""" if self.is_backtracking: self.stack.pop() else: popdfa, popstate, popnode = self.stack.pop() newnode = convert(self.grammar, popnode) if self.stack: dfa, state, node = self.stack[-1] assert node[-1] is not None node[-1].append(newnode) else: self.rootnode = newnode self.rootnode.used_names = self.used_names