All patches and comments are welcome. Please squash your changes to logical
commits before using git-format-patch and git-send-email to
patches@git.madduck.net.
If you'd read over the Git project's submission guidelines and adhered to them,
I'd be especially grateful.
2 String transformers that can split and merge strings.
6 from abc import ABC, abstractmethod
7 from collections import defaultdict
8 from dataclasses import dataclass
26 if sys.version_info < (3, 8):
27 from typing_extensions import Final, Literal
29 from typing import Literal, Final
31 from mypy_extensions import trait
33 from black.comments import contains_pragma_comment
34 from black.lines import Line, append_leaves
35 from black.mode import Feature, Mode
36 from black.nodes import (
43 is_part_of_annotation,
48 from black.rusty import Err, Ok, Result
49 from black.strings import (
50 assert_is_leaf_string,
54 normalize_string_quotes,
57 from blib2to3.pgen2 import token
58 from blib2to3.pytree import Leaf, Node
61 class CannotTransform(Exception):
62 """Base class for errors raised by Transformers."""
67 LN = Union[Leaf, Node]
68 Transformer = Callable[[Line, Collection[Feature], Mode], Iterator[Line]]
73 TResult = Result[T, CannotTransform] # (T)ransform Result
74 TMatchResult = TResult[List[Index]]
76 SPLIT_SAFE_CHARS = frozenset(["\u3001", "\u3002", "\uff0c"]) # East Asian stops
79 def TErr(err_msg: str) -> Err[CannotTransform]:
82 Convenience function used when working with the TResult type.
84 cant_transform = CannotTransform(err_msg)
85 return Err(cant_transform)
89 line: Line, features: Collection[Feature], mode: Mode
91 """A transformer which normalizes spacing around power operators."""
93 # Performance optimization to avoid unnecessary Leaf clones and other ops.
94 for leaf in line.leaves:
95 if leaf.type == token.DOUBLESTAR:
98 raise CannotTransform("No doublestar token was found in the line.")
100 def is_simple_lookup(index: int, step: Literal[1, -1]) -> bool:
101 # Brackets and parentheses indicate calls, subscripts, etc. ...
102 # basically stuff that doesn't count as "simple". Only a NAME lookup
103 # or dotted lookup (eg. NAME.NAME) is OK.
105 disallowed = {token.RPAR, token.RSQB}
107 disallowed = {token.LPAR, token.LSQB}
109 while 0 <= index < len(line.leaves):
110 current = line.leaves[index]
111 if current.type in disallowed:
113 if current.type not in {token.NAME, token.DOT} or current.value == "for":
114 # If the current token isn't disallowed, we'll assume this is simple as
115 # only the disallowed tokens are semantically attached to this lookup
116 # expression we're checking. Also, stop early if we hit the 'for' bit
117 # of a comprehension.
124 def is_simple_operand(index: int, kind: Literal["base", "exponent"]) -> bool:
125 # An operand is considered "simple" if's a NAME, a numeric CONSTANT, a simple
126 # lookup (see above), with or without a preceding unary operator.
127 start = line.leaves[index]
128 if start.type in {token.NAME, token.NUMBER}:
129 return is_simple_lookup(index, step=(1 if kind == "exponent" else -1))
131 if start.type in {token.PLUS, token.MINUS, token.TILDE}:
132 if line.leaves[index + 1].type in {token.NAME, token.NUMBER}:
133 # step is always one as bases with a preceding unary op will be checked
134 # for simplicity starting from the next token (so it'll hit the check
136 return is_simple_lookup(index + 1, step=1)
140 new_line = line.clone()
142 for idx, leaf in enumerate(line.leaves):
143 new_leaf = leaf.clone()
149 (0 < idx < len(line.leaves) - 1)
150 and leaf.type == token.DOUBLESTAR
151 and is_simple_operand(idx - 1, kind="base")
152 and line.leaves[idx - 1].value != "lambda"
153 and is_simple_operand(idx + 1, kind="exponent")
158 # We have to be careful to make a new line properly:
159 # - bracket related metadata must be maintained (handled by Line.append)
160 # - comments need to copied over, updating the leaf IDs they're attached to
161 new_line.append(new_leaf, preformatted=True)
162 for comment_leaf in line.comments_after(leaf):
163 new_line.append(comment_leaf, preformatted=True)
168 class StringTransformer(ABC):
170 An implementation of the Transformer protocol that relies on its
171 subclasses overriding the template methods `do_match(...)` and
174 This Transformer works exclusively on strings (for example, by merging
177 The following sections can be found among the docstrings of each concrete
178 StringTransformer subclass.
181 Which requirements must be met of the given Line for this
182 StringTransformer to be applied?
185 If the given Line meets all of the above requirements, which string
186 transformations can you expect to be applied to it by this
190 What contractual agreements does this StringTransformer have with other
191 StringTransfomers? Such collaborations should be eliminated/minimized
195 __name__: Final = "StringTransformer"
197 # Ideally this would be a dataclass, but unfortunately mypyc breaks when used with
199 def __init__(self, line_length: int, normalize_strings: bool) -> None:
200 self.line_length = line_length
201 self.normalize_strings = normalize_strings
204 def do_match(self, line: Line) -> TMatchResult:
207 * Ok(string_indices) such that for each index, `line.leaves[index]`
208 is our target string if a match was able to be made. For
209 transformers that don't result in more lines (e.g. StringMerger,
210 StringParenStripper), multiple matches and transforms are done at
211 once to reduce the complexity.
213 * Err(CannotTransform), if no match could be made.
218 self, line: Line, string_indices: List[int]
219 ) -> Iterator[TResult[Line]]:
222 * Ok(new_line) where new_line is the new transformed line.
224 * Err(CannotTransform) if the transformation failed for some reason. The
225 `do_match(...)` template method should usually be used to reject
226 the form of the given Line, but in some cases it is difficult to
227 know whether or not a Line meets the StringTransformer's
228 requirements until the transformation is already midway.
231 This method should NOT mutate @line directly, but it MAY mutate the
232 Line's underlying Node structure. (WARNING: If the underlying Node
233 structure IS altered, then this method should NOT be allowed to
234 yield an CannotTransform after that point.)
238 self, line: Line, _features: Collection[Feature], _mode: Mode
241 StringTransformer instances have a call signature that mirrors that of
242 the Transformer type.
245 CannotTransform(...) if the concrete StringTransformer class is unable
248 # Optimization to avoid calling `self.do_match(...)` when the line does
249 # not contain any string.
250 if not any(leaf.type == token.STRING for leaf in line.leaves):
251 raise CannotTransform("There are no strings in this line.")
253 match_result = self.do_match(line)
255 if isinstance(match_result, Err):
256 cant_transform = match_result.err()
257 raise CannotTransform(
258 f"The string transformer {self.__class__.__name__} does not recognize"
259 " this line as one that it can transform."
260 ) from cant_transform
262 string_indices = match_result.ok()
264 for line_result in self.do_transform(line, string_indices):
265 if isinstance(line_result, Err):
266 cant_transform = line_result.err()
267 raise CannotTransform(
268 "StringTransformer failed while attempting to transform string."
269 ) from cant_transform
270 line = line_result.ok()
276 """A custom (i.e. manual) string split.
278 A single CustomSplit instance represents a single substring.
281 Consider the following string:
288 This string will correspond to the following three CustomSplit instances:
290 CustomSplit(False, 16)
291 CustomSplit(False, 17)
292 CustomSplit(True, 16)
301 class CustomSplitMapMixin:
303 This mixin class is used to map merged strings to a sequence of
304 CustomSplits, which will then be used to re-split the strings iff none of
305 the resultant substrings go over the configured max line length.
308 _Key: ClassVar = Tuple[StringID, str]
309 _CUSTOM_SPLIT_MAP: ClassVar[Dict[_Key, Tuple[CustomSplit, ...]]] = defaultdict(
314 def _get_key(string: str) -> "CustomSplitMapMixin._Key":
317 A unique identifier that is used internally to map @string to a
318 group of custom splits.
320 return (id(string), string)
322 def add_custom_splits(
323 self, string: str, custom_splits: Iterable[CustomSplit]
325 """Custom Split Map Setter Method
328 Adds a mapping from @string to the custom splits @custom_splits.
330 key = self._get_key(string)
331 self._CUSTOM_SPLIT_MAP[key] = tuple(custom_splits)
333 def pop_custom_splits(self, string: str) -> List[CustomSplit]:
334 """Custom Split Map Getter Method
337 * A list of the custom splits that are mapped to @string, if any
343 Deletes the mapping between @string and its associated custom
344 splits (which are returned to the caller).
346 key = self._get_key(string)
348 custom_splits = self._CUSTOM_SPLIT_MAP[key]
349 del self._CUSTOM_SPLIT_MAP[key]
351 return list(custom_splits)
353 def has_custom_splits(self, string: str) -> bool:
356 True iff @string is associated with a set of custom splits.
358 key = self._get_key(string)
359 return key in self._CUSTOM_SPLIT_MAP
362 class StringMerger(StringTransformer, CustomSplitMapMixin):
363 """StringTransformer that merges strings together.
366 (A) The line contains adjacent strings such that ALL of the validation checks
367 listed in StringMerger._validate_msg(...)'s docstring pass.
369 (B) The line contains a string which uses line continuation backslashes.
372 Depending on which of the two requirements above where met, either:
374 (A) The string group associated with the target string is merged.
376 (B) All line-continuation backslashes are removed from the target string.
379 StringMerger provides custom split information to StringSplitter.
382 def do_match(self, line: Line) -> TMatchResult:
385 is_valid_index = is_valid_index_factory(LL)
389 while is_valid_index(idx):
392 leaf.type == token.STRING
393 and is_valid_index(idx + 1)
394 and LL[idx + 1].type == token.STRING
396 if not is_part_of_annotation(leaf):
397 string_indices.append(idx)
399 # Advance to the next non-STRING leaf.
401 while is_valid_index(idx) and LL[idx].type == token.STRING:
404 elif leaf.type == token.STRING and "\\\n" in leaf.value:
405 string_indices.append(idx)
406 # Advance to the next non-STRING leaf.
408 while is_valid_index(idx) and LL[idx].type == token.STRING:
415 return Ok(string_indices)
417 return TErr("This line has no strings that need merging.")
420 self, line: Line, string_indices: List[int]
421 ) -> Iterator[TResult[Line]]:
424 rblc_result = self._remove_backslash_line_continuation_chars(
425 new_line, string_indices
427 if isinstance(rblc_result, Ok):
428 new_line = rblc_result.ok()
430 msg_result = self._merge_string_group(new_line, string_indices)
431 if isinstance(msg_result, Ok):
432 new_line = msg_result.ok()
434 if isinstance(rblc_result, Err) and isinstance(msg_result, Err):
435 msg_cant_transform = msg_result.err()
436 rblc_cant_transform = rblc_result.err()
437 cant_transform = CannotTransform(
438 "StringMerger failed to merge any strings in this line."
441 # Chain the errors together using `__cause__`.
442 msg_cant_transform.__cause__ = rblc_cant_transform
443 cant_transform.__cause__ = msg_cant_transform
445 yield Err(cant_transform)
450 def _remove_backslash_line_continuation_chars(
451 line: Line, string_indices: List[int]
454 Merge strings that were split across multiple lines using
455 line-continuation backslashes.
458 Ok(new_line), if @line contains backslash line-continuation
461 Err(CannotTransform), otherwise.
465 indices_to_transform = []
466 for string_idx in string_indices:
467 string_leaf = LL[string_idx]
469 string_leaf.type == token.STRING
470 and "\\\n" in string_leaf.value
471 and not has_triple_quotes(string_leaf.value)
473 indices_to_transform.append(string_idx)
475 if not indices_to_transform:
477 "Found no string leaves that contain backslash line continuation"
481 new_line = line.clone()
482 new_line.comments = line.comments.copy()
483 append_leaves(new_line, line, LL)
485 for string_idx in indices_to_transform:
486 new_string_leaf = new_line.leaves[string_idx]
487 new_string_leaf.value = new_string_leaf.value.replace("\\\n", "")
491 def _merge_string_group(
492 self, line: Line, string_indices: List[int]
495 Merges string groups (i.e. set of adjacent strings).
497 Each index from `string_indices` designates one string group's first
498 leaf in `line.leaves`.
501 Ok(new_line), if ALL of the validation checks found in
502 _validate_msg(...) pass.
504 Err(CannotTransform), otherwise.
508 is_valid_index = is_valid_index_factory(LL)
510 # A dict of {string_idx: tuple[num_of_strings, string_leaf]}.
511 merged_string_idx_dict: Dict[int, Tuple[int, Leaf]] = {}
512 for string_idx in string_indices:
513 vresult = self._validate_msg(line, string_idx)
514 if isinstance(vresult, Err):
516 merged_string_idx_dict[string_idx] = self._merge_one_string_group(
517 LL, string_idx, is_valid_index
520 if not merged_string_idx_dict:
521 return TErr("No string group is merged")
523 # Build the final line ('new_line') that this method will later return.
524 new_line = line.clone()
525 previous_merged_string_idx = -1
526 previous_merged_num_of_strings = -1
527 for i, leaf in enumerate(LL):
528 if i in merged_string_idx_dict:
529 previous_merged_string_idx = i
530 previous_merged_num_of_strings, string_leaf = merged_string_idx_dict[i]
531 new_line.append(string_leaf)
534 previous_merged_string_idx
536 < previous_merged_string_idx + previous_merged_num_of_strings
538 for comment_leaf in line.comments_after(LL[i]):
539 new_line.append(comment_leaf, preformatted=True)
542 append_leaves(new_line, line, [leaf])
546 def _merge_one_string_group(
547 self, LL: List[Leaf], string_idx: int, is_valid_index: Callable[[int], bool]
548 ) -> Tuple[int, Leaf]:
550 Merges one string group where the first string in the group is
554 A tuple of `(num_of_strings, leaf)` where `num_of_strings` is the
555 number of strings merged and `leaf` is the newly merged string
556 to be replaced in the new line.
558 # If the string group is wrapped inside an Atom node, we must make sure
559 # to later replace that Atom with our new (merged) string leaf.
560 atom_node = LL[string_idx].parent
562 # We will place BREAK_MARK in between every two substrings that we
563 # merge. We will then later go through our final result and use the
564 # various instances of BREAK_MARK we find to add the right values to
565 # the custom split map.
566 BREAK_MARK = "@@@@@ BLACK BREAKPOINT MARKER @@@@@"
568 QUOTE = LL[string_idx].value[-1]
570 def make_naked(string: str, string_prefix: str) -> str:
571 """Strip @string (i.e. make it a "naked" string)
574 * assert_is_leaf_string(@string)
577 A string that is identical to @string except that
578 @string_prefix has been stripped, the surrounding QUOTE
579 characters have been removed, and any remaining QUOTE
580 characters have been escaped.
582 assert_is_leaf_string(string)
583 if "f" in string_prefix:
584 string = _toggle_fexpr_quotes(string, QUOTE)
585 # After quotes toggling, quotes in expressions won't be escaped
586 # because quotes can't be reused in f-strings. So we can simply
587 # let the escaping logic below run without knowing f-string
590 RE_EVEN_BACKSLASHES = r"(?:(?<!\\)(?:\\\\)*)"
591 naked_string = string[len(string_prefix) + 1 : -1]
592 naked_string = re.sub(
593 "(" + RE_EVEN_BACKSLASHES + ")" + QUOTE, r"\1\\" + QUOTE, naked_string
597 # Holds the CustomSplit objects that will later be added to the custom
601 # Temporary storage for the 'has_prefix' part of the CustomSplit objects.
604 # Sets the 'prefix' variable. This is the prefix that the final merged
606 next_str_idx = string_idx
610 and is_valid_index(next_str_idx)
611 and LL[next_str_idx].type == token.STRING
613 prefix = get_string_prefix(LL[next_str_idx].value).lower()
616 # The next loop merges the string group. The final string will be
619 # The following convenience variables are used:
624 # NSS: naked next string
628 next_str_idx = string_idx
629 while is_valid_index(next_str_idx) and LL[next_str_idx].type == token.STRING:
632 SS = LL[next_str_idx].value
633 next_prefix = get_string_prefix(SS).lower()
635 # If this is an f-string group but this substring is not prefixed
637 if "f" in prefix and "f" not in next_prefix:
638 # Then we must escape any braces contained in this substring.
639 SS = re.sub(r"(\{|\})", r"\1\1", SS)
641 NSS = make_naked(SS, next_prefix)
643 has_prefix = bool(next_prefix)
644 prefix_tracker.append(has_prefix)
646 S = prefix + QUOTE + NS + NSS + BREAK_MARK + QUOTE
647 NS = make_naked(S, prefix)
651 # Take a note on the index of the non-STRING leaf.
652 non_string_idx = next_str_idx
654 S_leaf = Leaf(token.STRING, S)
655 if self.normalize_strings:
656 S_leaf.value = normalize_string_quotes(S_leaf.value)
658 # Fill the 'custom_splits' list with the appropriate CustomSplit objects.
659 temp_string = S_leaf.value[len(prefix) + 1 : -1]
660 for has_prefix in prefix_tracker:
661 mark_idx = temp_string.find(BREAK_MARK)
664 ), "Logic error while filling the custom string breakpoint cache."
666 temp_string = temp_string[mark_idx + len(BREAK_MARK) :]
667 breakpoint_idx = mark_idx + (len(prefix) if has_prefix else 0) + 1
668 custom_splits.append(CustomSplit(has_prefix, breakpoint_idx))
670 string_leaf = Leaf(token.STRING, S_leaf.value.replace(BREAK_MARK, ""))
672 if atom_node is not None:
673 # If not all children of the atom node are merged (this can happen
674 # when there is a standalone comment in the middle) ...
675 if non_string_idx - string_idx < len(atom_node.children):
676 # We need to replace the old STRING leaves with the new string leaf.
677 first_child_idx = LL[string_idx].remove()
678 for idx in range(string_idx + 1, non_string_idx):
680 if first_child_idx is not None:
681 atom_node.insert_child(first_child_idx, string_leaf)
683 # Else replace the atom node with the new string leaf.
684 replace_child(atom_node, string_leaf)
686 self.add_custom_splits(string_leaf.value, custom_splits)
687 return num_of_strings, string_leaf
690 def _validate_msg(line: Line, string_idx: int) -> TResult[None]:
691 """Validate (M)erge (S)tring (G)roup
693 Transform-time string validation logic for _merge_string_group(...).
696 * Ok(None), if ALL validation checks (listed below) pass.
698 * Err(CannotTransform), if any of the following are true:
699 - The target string group does not contain ANY stand-alone comments.
700 - The target string is not in a string group (i.e. it has no
702 - The string group has more than one inline comment.
703 - The string group has an inline comment that appears to be a pragma.
704 - The set of all string prefixes in the string group is of
705 length greater than one and is not equal to {"", "f"}.
706 - The string group consists of raw strings.
707 - The string group is stringified type annotations. We don't want to
708 process stringified type annotations since pyright doesn't support
709 them spanning multiple string values. (NOTE: mypy, pytype, pyre do
710 support them, so we can change if pyright also gains support in the
711 future. See https://github.com/microsoft/pyright/issues/4359.)
713 # We first check for "inner" stand-alone comments (i.e. stand-alone
714 # comments that have a string leaf before them AND after them).
717 found_sa_comment = False
718 is_valid_index = is_valid_index_factory(line.leaves)
719 while is_valid_index(i) and line.leaves[i].type in [
723 if line.leaves[i].type == STANDALONE_COMMENT:
724 found_sa_comment = True
725 elif found_sa_comment:
727 "StringMerger does NOT merge string groups which contain "
728 "stand-alone comments."
733 num_of_inline_string_comments = 0
734 set_of_prefixes = set()
736 for leaf in line.leaves[string_idx:]:
737 if leaf.type != token.STRING:
738 # If the string group is trailed by a comma, we count the
739 # comments trailing the comma to be one of the string group's
741 if leaf.type == token.COMMA and id(leaf) in line.comments:
742 num_of_inline_string_comments += 1
745 if has_triple_quotes(leaf.value):
746 return TErr("StringMerger does NOT merge multiline strings.")
749 prefix = get_string_prefix(leaf.value).lower()
751 return TErr("StringMerger does NOT merge raw strings.")
753 set_of_prefixes.add(prefix)
755 if id(leaf) in line.comments:
756 num_of_inline_string_comments += 1
757 if contains_pragma_comment(line.comments[id(leaf)]):
758 return TErr("Cannot merge strings which have pragma comments.")
760 if num_of_strings < 2:
762 f"Not enough strings to merge (num_of_strings={num_of_strings})."
765 if num_of_inline_string_comments > 1:
767 f"Too many inline string comments ({num_of_inline_string_comments})."
770 if len(set_of_prefixes) > 1 and set_of_prefixes != {"", "f"}:
771 return TErr(f"Too many different prefixes ({set_of_prefixes}).")
776 class StringParenStripper(StringTransformer):
777 """StringTransformer that strips surrounding parentheses from strings.
780 The line contains a string which is surrounded by parentheses and:
781 - The target string is NOT the only argument to a function call.
782 - The target string is NOT a "pointless" string.
783 - If the target string contains a PERCENT, the brackets are not
784 preceded or followed by an operator with higher precedence than
788 The parentheses mentioned in the 'Requirements' section are stripped.
791 StringParenStripper has its own inherent usefulness, but it is also
792 relied on to clean up the parentheses created by StringParenWrapper (in
793 the event that they are no longer needed).
796 def do_match(self, line: Line) -> TMatchResult:
799 is_valid_index = is_valid_index_factory(LL)
810 # Should be a string...
811 if leaf.type != token.STRING:
814 # If this is a "pointless" string...
817 and leaf.parent.parent
818 and leaf.parent.parent.type == syms.simple_stmt
822 # Should be preceded by a non-empty LPAR...
824 not is_valid_index(idx - 1)
825 or LL[idx - 1].type != token.LPAR
826 or is_empty_lpar(LL[idx - 1])
830 # That LPAR should NOT be preceded by a function name or a closing
831 # bracket (which could be a function which returns a function or a
832 # list/dictionary that contains a function)...
833 if is_valid_index(idx - 2) and (
834 LL[idx - 2].type == token.NAME or LL[idx - 2].type in CLOSING_BRACKETS
840 # Skip the string trailer, if one exists.
841 string_parser = StringParser()
842 next_idx = string_parser.parse(LL, string_idx)
844 # if the leaves in the parsed string include a PERCENT, we need to
845 # make sure the initial LPAR is NOT preceded by an operator with
846 # higher or equal precedence to PERCENT
847 if is_valid_index(idx - 2):
848 # mypy can't quite follow unless we name this
849 before_lpar = LL[idx - 2]
850 if token.PERCENT in {leaf.type for leaf in LL[idx - 1 : next_idx]} and (
867 # only unary PLUS/MINUS
869 and before_lpar.parent.type == syms.factor
870 and (before_lpar.type in {token.PLUS, token.MINUS})
875 # Should be followed by a non-empty RPAR...
877 is_valid_index(next_idx)
878 and LL[next_idx].type == token.RPAR
879 and not is_empty_rpar(LL[next_idx])
881 # That RPAR should NOT be followed by anything with higher
882 # precedence than PERCENT
883 if is_valid_index(next_idx + 1) and LL[next_idx + 1].type in {
891 string_indices.append(string_idx)
893 while idx < len(LL) - 1 and LL[idx + 1].type == token.STRING:
897 return Ok(string_indices)
898 return TErr("This line has no strings wrapped in parens.")
901 self, line: Line, string_indices: List[int]
902 ) -> Iterator[TResult[Line]]:
905 string_and_rpar_indices: List[int] = []
906 for string_idx in string_indices:
907 string_parser = StringParser()
908 rpar_idx = string_parser.parse(LL, string_idx)
910 should_transform = True
911 for leaf in (LL[string_idx - 1], LL[rpar_idx]):
912 if line.comments_after(leaf):
913 # Should not strip parentheses which have comments attached
915 should_transform = False
918 string_and_rpar_indices.extend((string_idx, rpar_idx))
920 if string_and_rpar_indices:
921 yield Ok(self._transform_to_new_line(line, string_and_rpar_indices))
924 CannotTransform("All string groups have comments attached to them.")
927 def _transform_to_new_line(
928 self, line: Line, string_and_rpar_indices: List[int]
932 new_line = line.clone()
933 new_line.comments = line.comments.copy()
936 # We need to sort the indices, since string_idx and its matching
937 # rpar_idx may not come in order, e.g. in
938 # `("outer" % ("inner".join(items)))`, the "inner" string's
939 # string_idx is smaller than "outer" string's rpar_idx.
940 for idx in sorted(string_and_rpar_indices):
942 lpar_or_rpar_idx = idx - 1 if leaf.type == token.STRING else idx
943 append_leaves(new_line, line, LL[previous_idx + 1 : lpar_or_rpar_idx])
944 if leaf.type == token.STRING:
945 string_leaf = Leaf(token.STRING, LL[idx].value)
946 LL[lpar_or_rpar_idx].remove() # Remove lpar.
947 replace_child(LL[idx], string_leaf)
948 new_line.append(string_leaf)
950 LL[lpar_or_rpar_idx].remove() # This is a rpar.
954 # Append the leaves after the last idx:
955 append_leaves(new_line, line, LL[idx + 1 :])
960 class BaseStringSplitter(StringTransformer):
962 Abstract class for StringTransformers which transform a Line's strings by splitting
963 them or placing them on their own lines where necessary to avoid going over
964 the configured line length.
967 * The target string value is responsible for the line going over the
968 line length limit. It follows that after all of black's other line
969 split methods have been exhausted, this line (or one of the resulting
970 lines after all line splits are performed) would still be over the
971 line_length limit unless we split this string.
974 * The target string is NOT a "pointless" string (i.e. a string that has
975 no parent or siblings).
978 * The target string is not followed by an inline comment that appears
982 * The target string is not a multiline (i.e. triple-quote) string.
985 STRING_OPERATORS: Final = [
998 def do_splitter_match(self, line: Line) -> TMatchResult:
1000 BaseStringSplitter asks its clients to override this method instead of
1001 `StringTransformer.do_match(...)`.
1003 Follows the same protocol as `StringTransformer.do_match(...)`.
1005 Refer to `help(StringTransformer.do_match)` for more information.
1008 def do_match(self, line: Line) -> TMatchResult:
1009 match_result = self.do_splitter_match(line)
1010 if isinstance(match_result, Err):
1013 string_indices = match_result.ok()
1014 assert len(string_indices) == 1, (
1015 f"{self.__class__.__name__} should only find one match at a time, found"
1016 f" {len(string_indices)}"
1018 string_idx = string_indices[0]
1019 vresult = self._validate(line, string_idx)
1020 if isinstance(vresult, Err):
1025 def _validate(self, line: Line, string_idx: int) -> TResult[None]:
1027 Checks that @line meets all of the requirements listed in this classes'
1028 docstring. Refer to `help(BaseStringSplitter)` for a detailed
1029 description of those requirements.
1032 * Ok(None), if ALL of the requirements are met.
1034 * Err(CannotTransform), if ANY of the requirements are NOT met.
1038 string_leaf = LL[string_idx]
1040 max_string_length = self._get_max_string_length(line, string_idx)
1041 if len(string_leaf.value) <= max_string_length:
1043 "The string itself is not what is causing this line to be too long."
1046 if not string_leaf.parent or [L.type for L in string_leaf.parent.children] == [
1051 f"This string ({string_leaf.value}) appears to be pointless (i.e. has"
1055 if id(line.leaves[string_idx]) in line.comments and contains_pragma_comment(
1056 line.comments[id(line.leaves[string_idx])]
1059 "Line appears to end with an inline pragma comment. Splitting the line"
1060 " could modify the pragma's behavior."
1063 if has_triple_quotes(string_leaf.value):
1064 return TErr("We cannot split multiline strings.")
1068 def _get_max_string_length(self, line: Line, string_idx: int) -> int:
1070 Calculates the max string length used when attempting to determine
1071 whether or not the target string is responsible for causing the line to
1072 go over the line length limit.
1074 WARNING: This method is tightly coupled to both StringSplitter and
1075 (especially) StringParenWrapper. There is probably a better way to
1076 accomplish what is being done here.
1079 max_string_length: such that `line.leaves[string_idx].value >
1080 max_string_length` implies that the target string IS responsible
1081 for causing this line to exceed the line length limit.
1085 is_valid_index = is_valid_index_factory(LL)
1087 # We use the shorthand "WMA4" in comments to abbreviate "We must
1088 # account for". When giving examples, we use STRING to mean some/any
1091 # Finally, we use the following convenience variables:
1093 # P: The leaf that is before the target string leaf.
1094 # N: The leaf that is after the target string leaf.
1095 # NN: The leaf that is after N.
1097 # WMA4 the whitespace at the beginning of the line.
1098 offset = line.depth * 4
1100 if is_valid_index(string_idx - 1):
1101 p_idx = string_idx - 1
1103 LL[string_idx - 1].type == token.LPAR
1104 and LL[string_idx - 1].value == ""
1107 # If the previous leaf is an empty LPAR placeholder, we should skip it.
1111 if P.type in self.STRING_OPERATORS:
1112 # WMA4 a space and a string operator (e.g. `+ STRING` or `== STRING`).
1113 offset += len(str(P)) + 1
1115 if P.type == token.COMMA:
1116 # WMA4 a space, a comma, and a closing bracket [e.g. `), STRING`].
1119 if P.type in [token.COLON, token.EQUAL, token.PLUSEQUAL, token.NAME]:
1120 # This conditional branch is meant to handle dictionary keys,
1121 # variable assignments, 'return STRING' statement lines, and
1122 # 'else STRING' ternary expression lines.
1124 # WMA4 a single space.
1127 # WMA4 the lengths of any leaves that came before that space,
1128 # but after any closing bracket before that space.
1129 for leaf in reversed(LL[: p_idx + 1]):
1130 offset += len(str(leaf))
1131 if leaf.type in CLOSING_BRACKETS:
1134 if is_valid_index(string_idx + 1):
1135 N = LL[string_idx + 1]
1136 if N.type == token.RPAR and N.value == "" and len(LL) > string_idx + 2:
1137 # If the next leaf is an empty RPAR placeholder, we should skip it.
1138 N = LL[string_idx + 2]
1140 if N.type == token.COMMA:
1141 # WMA4 a single comma at the end of the string (e.g `STRING,`).
1144 if is_valid_index(string_idx + 2):
1145 NN = LL[string_idx + 2]
1147 if N.type == token.DOT and NN.type == token.NAME:
1148 # This conditional branch is meant to handle method calls invoked
1149 # off of a string literal up to and including the LPAR character.
1151 # WMA4 the '.' character.
1155 is_valid_index(string_idx + 3)
1156 and LL[string_idx + 3].type == token.LPAR
1158 # WMA4 the left parenthesis character.
1161 # WMA4 the length of the method's name.
1162 offset += len(NN.value)
1164 has_comments = False
1165 for comment_leaf in line.comments_after(LL[string_idx]):
1166 if not has_comments:
1168 # WMA4 two spaces before the '#' character.
1171 # WMA4 the length of the inline comment.
1172 offset += len(comment_leaf.value)
1174 max_string_length = count_chars_in_width(str(line), self.line_length - offset)
1175 return max_string_length
1178 def _prefer_paren_wrap_match(LL: List[Leaf]) -> Optional[int]:
1181 string_idx such that @LL[string_idx] is equal to our target (i.e.
1182 matched) string, if this line matches the "prefer paren wrap" statement
1183 requirements listed in the 'Requirements' section of the StringParenWrapper
1188 # The line must start with a string.
1189 if LL[0].type != token.STRING:
1197 # If the string is an immediate child of a list/set/tuple literal...
1199 parent_type(LL[0]) in matching_nodes
1200 or parent_type(LL[0].parent) in matching_nodes
1202 # And the string is surrounded by commas (or is the first/last child)...
1203 prev_sibling = LL[0].prev_sibling
1204 next_sibling = LL[0].next_sibling
1207 and not next_sibling
1208 and parent_type(LL[0]) == syms.atom
1210 # If it's an atom string, we need to check the parent atom's siblings.
1211 parent = LL[0].parent
1212 assert parent is not None # For type checkers.
1213 prev_sibling = parent.prev_sibling
1214 next_sibling = parent.next_sibling
1215 if (not prev_sibling or prev_sibling.type == token.COMMA) and (
1216 not next_sibling or next_sibling.type == token.COMMA
1223 def iter_fexpr_spans(s: str) -> Iterator[Tuple[int, int]]:
1225 Yields spans corresponding to expressions in a given f-string.
1226 Spans are half-open ranges (left inclusive, right exclusive).
1227 Assumes the input string is a valid f-string, but will not crash if the input
1230 stack: List[int] = [] # our curly paren stack
1234 # if we're in a string part of the f-string, ignore escaped curly braces
1235 if not stack and i + 1 < len(s) and s[i + 1] == "{":
1247 # we've made it back out of the expression! yield the span
1253 # if we're in an expression part of the f-string, fast forward through strings
1254 # note that backslashes are not legal in the expression portion of f-strings
1257 if s[i : i + 3] in ("'''", '"""'):
1258 delim = s[i : i + 3]
1259 elif s[i] in ("'", '"'):
1263 while i < len(s) and s[i : i + len(delim)] != delim:
1270 def fstring_contains_expr(s: str) -> bool:
1271 return any(iter_fexpr_spans(s))
1274 def _toggle_fexpr_quotes(fstring: str, old_quote: str) -> str:
1276 Toggles quotes used in f-string expressions that are `old_quote`.
1278 f-string expressions can't contain backslashes, so we need to toggle the
1279 quotes if the f-string itself will end up using the same quote. We can
1280 simply toggle without escaping because, quotes can't be reused in f-string
1281 expressions. They will fail to parse.
1283 NOTE: If PEP 701 is accepted, above statement will no longer be true.
1284 Though if quotes can be reused, we can simply reuse them without updates or
1285 escaping, once Black figures out how to parse the new grammar.
1287 new_quote = "'" if old_quote == '"' else '"'
1290 for start, end in iter_fexpr_spans(fstring):
1291 parts.append(fstring[previous_index:start])
1292 parts.append(fstring[start:end].replace(old_quote, new_quote))
1293 previous_index = end
1294 parts.append(fstring[previous_index:])
1295 return "".join(parts)
1298 class StringSplitter(BaseStringSplitter, CustomSplitMapMixin):
1300 StringTransformer that splits "atom" strings (i.e. strings which exist on
1301 lines by themselves).
1304 * The line consists ONLY of a single string (possibly prefixed by a
1305 string operator [e.g. '+' or '==']), MAYBE a string trailer, and MAYBE
1308 * All of the requirements listed in BaseStringSplitter's docstring.
1311 The string mentioned in the 'Requirements' section is split into as
1312 many substrings as necessary to adhere to the configured line length.
1314 In the final set of substrings, no substring should be smaller than
1315 MIN_SUBSTR_SIZE characters.
1317 The string will ONLY be split on spaces (i.e. each new substring should
1318 start with a space). Note that the string will NOT be split on a space
1319 which is escaped with a backslash.
1321 If the string is an f-string, it will NOT be split in the middle of an
1322 f-expression (e.g. in f"FooBar: {foo() if x else bar()}", {foo() if x
1323 else bar()} is an f-expression).
1325 If the string that is being split has an associated set of custom split
1326 records and those custom splits will NOT result in any line going over
1327 the configured line length, those custom splits are used. Otherwise the
1328 string is split as late as possible (from left-to-right) while still
1329 adhering to the transformation rules listed above.
1332 StringSplitter relies on StringMerger to construct the appropriate
1333 CustomSplit objects and add them to the custom split map.
1336 MIN_SUBSTR_SIZE: Final = 6
1338 def do_splitter_match(self, line: Line) -> TMatchResult:
1341 if self._prefer_paren_wrap_match(LL) is not None:
1342 return TErr("Line needs to be wrapped in parens first.")
1344 is_valid_index = is_valid_index_factory(LL)
1348 # The first two leaves MAY be the 'not in' keywords...
1351 and is_valid_index(idx + 1)
1352 and [LL[idx].type, LL[idx + 1].type] == [token.NAME, token.NAME]
1353 and str(LL[idx]) + str(LL[idx + 1]) == "not in"
1356 # Else the first leaf MAY be a string operator symbol or the 'in' keyword...
1357 elif is_valid_index(idx) and (
1358 LL[idx].type in self.STRING_OPERATORS
1359 or LL[idx].type == token.NAME
1360 and str(LL[idx]) == "in"
1364 # The next/first leaf MAY be an empty LPAR...
1365 if is_valid_index(idx) and is_empty_lpar(LL[idx]):
1368 # The next/first leaf MUST be a string...
1369 if not is_valid_index(idx) or LL[idx].type != token.STRING:
1370 return TErr("Line does not start with a string.")
1374 # Skip the string trailer, if one exists.
1375 string_parser = StringParser()
1376 idx = string_parser.parse(LL, string_idx)
1378 # That string MAY be followed by an empty RPAR...
1379 if is_valid_index(idx) and is_empty_rpar(LL[idx]):
1382 # That string / empty RPAR leaf MAY be followed by a comma...
1383 if is_valid_index(idx) and LL[idx].type == token.COMMA:
1386 # But no more leaves are allowed...
1387 if is_valid_index(idx):
1388 return TErr("This line does not end with a string.")
1390 return Ok([string_idx])
1393 self, line: Line, string_indices: List[int]
1394 ) -> Iterator[TResult[Line]]:
1396 assert len(string_indices) == 1, (
1397 f"{self.__class__.__name__} should only find one match at a time, found"
1398 f" {len(string_indices)}"
1400 string_idx = string_indices[0]
1402 QUOTE = LL[string_idx].value[-1]
1404 is_valid_index = is_valid_index_factory(LL)
1405 insert_str_child = insert_str_child_factory(LL[string_idx])
1407 prefix = get_string_prefix(LL[string_idx].value).lower()
1409 # We MAY choose to drop the 'f' prefix from substrings that don't
1410 # contain any f-expressions, but ONLY if the original f-string
1411 # contains at least one f-expression. Otherwise, we will alter the AST
1413 drop_pointless_f_prefix = ("f" in prefix) and fstring_contains_expr(
1414 LL[string_idx].value
1417 first_string_line = True
1419 string_op_leaves = self._get_string_operator_leaves(LL)
1420 string_op_leaves_length = (
1421 sum(len(str(prefix_leaf)) for prefix_leaf in string_op_leaves) + 1
1426 def maybe_append_string_operators(new_line: Line) -> None:
1429 If @line starts with a string operator and this is the first
1430 line we are constructing, this function appends the string
1431 operator to @new_line and replaces the old string operator leaf
1432 in the node structure. Otherwise this function does nothing.
1434 maybe_prefix_leaves = string_op_leaves if first_string_line else []
1435 for i, prefix_leaf in enumerate(maybe_prefix_leaves):
1436 replace_child(LL[i], prefix_leaf)
1437 new_line.append(prefix_leaf)
1440 is_valid_index(string_idx + 1) and LL[string_idx + 1].type == token.COMMA
1443 def max_last_string_column() -> int:
1446 The max allowed width of the string value used for the last
1447 line we will construct. Note that this value means the width
1448 rather than the number of characters (e.g., many East Asian
1449 characters expand to two columns).
1451 result = self.line_length
1452 result -= line.depth * 4
1453 result -= 1 if ends_with_comma else 0
1454 result -= string_op_leaves_length
1457 # --- Calculate Max Break Width (for string value)
1458 # We start with the line length limit
1459 max_break_width = self.line_length
1460 # The last index of a string of length N is N-1.
1461 max_break_width -= 1
1462 # Leading whitespace is not present in the string value (e.g. Leaf.value).
1463 max_break_width -= line.depth * 4
1464 if max_break_width < 0:
1466 f"Unable to split {LL[string_idx].value} at such high of a line depth:"
1471 # Check if StringMerger registered any custom splits.
1472 custom_splits = self.pop_custom_splits(LL[string_idx].value)
1473 # We use them ONLY if none of them would produce lines that exceed the
1475 use_custom_breakpoints = bool(
1477 and all(csplit.break_idx <= max_break_width for csplit in custom_splits)
1480 # Temporary storage for the remaining chunk of the string line that
1481 # can't fit onto the line currently being constructed.
1482 rest_value = LL[string_idx].value
1484 def more_splits_should_be_made() -> bool:
1487 True iff `rest_value` (the remaining string value from the last
1488 split), should be split again.
1490 if use_custom_breakpoints:
1491 return len(custom_splits) > 1
1493 return str_width(rest_value) > max_last_string_column()
1495 string_line_results: List[Ok[Line]] = []
1496 while more_splits_should_be_made():
1497 if use_custom_breakpoints:
1498 # Custom User Split (manual)
1499 csplit = custom_splits.pop(0)
1500 break_idx = csplit.break_idx
1502 # Algorithmic Split (automatic)
1504 count_chars_in_width(rest_value, max_break_width)
1505 - string_op_leaves_length
1507 maybe_break_idx = self._get_break_idx(rest_value, max_bidx)
1508 if maybe_break_idx is None:
1509 # If we are unable to algorithmically determine a good split
1510 # and this string has custom splits registered to it, we
1511 # fall back to using them--which means we have to start
1512 # over from the beginning.
1514 rest_value = LL[string_idx].value
1515 string_line_results = []
1516 first_string_line = True
1517 use_custom_breakpoints = True
1520 # Otherwise, we stop splitting here.
1523 break_idx = maybe_break_idx
1525 # --- Construct `next_value`
1526 next_value = rest_value[:break_idx] + QUOTE
1528 # HACK: The following 'if' statement is a hack to fix the custom
1529 # breakpoint index in the case of either: (a) substrings that were
1530 # f-strings but will have the 'f' prefix removed OR (b) substrings
1531 # that were not f-strings but will now become f-strings because of
1532 # redundant use of the 'f' prefix (i.e. none of the substrings
1533 # contain f-expressions but one or more of them had the 'f' prefix
1534 # anyway; in which case, we will prepend 'f' to _all_ substrings).
1536 # There is probably a better way to accomplish what is being done
1539 # If this substring is an f-string, we _could_ remove the 'f'
1540 # prefix, and the current custom split did NOT originally use a
1543 use_custom_breakpoints
1544 and not csplit.has_prefix
1546 # `next_value == prefix + QUOTE` happens when the custom
1547 # split is an empty string.
1548 next_value == prefix + QUOTE
1549 or next_value != self._normalize_f_string(next_value, prefix)
1552 # Then `csplit.break_idx` will be off by one after removing
1555 next_value = rest_value[:break_idx] + QUOTE
1557 if drop_pointless_f_prefix:
1558 next_value = self._normalize_f_string(next_value, prefix)
1560 # --- Construct `next_leaf`
1561 next_leaf = Leaf(token.STRING, next_value)
1562 insert_str_child(next_leaf)
1563 self._maybe_normalize_string_quotes(next_leaf)
1565 # --- Construct `next_line`
1566 next_line = line.clone()
1567 maybe_append_string_operators(next_line)
1568 next_line.append(next_leaf)
1569 string_line_results.append(Ok(next_line))
1571 rest_value = prefix + QUOTE + rest_value[break_idx:]
1572 first_string_line = False
1574 yield from string_line_results
1576 if drop_pointless_f_prefix:
1577 rest_value = self._normalize_f_string(rest_value, prefix)
1579 rest_leaf = Leaf(token.STRING, rest_value)
1580 insert_str_child(rest_leaf)
1582 # NOTE: I could not find a test case that verifies that the following
1583 # line is actually necessary, but it seems to be. Otherwise we risk
1584 # not normalizing the last substring, right?
1585 self._maybe_normalize_string_quotes(rest_leaf)
1587 last_line = line.clone()
1588 maybe_append_string_operators(last_line)
1590 # If there are any leaves to the right of the target string...
1591 if is_valid_index(string_idx + 1):
1592 # We use `temp_value` here to determine how long the last line
1593 # would be if we were to append all the leaves to the right of the
1594 # target string to the last string line.
1595 temp_value = rest_value
1596 for leaf in LL[string_idx + 1 :]:
1597 temp_value += str(leaf)
1598 if leaf.type == token.LPAR:
1601 # Try to fit them all on the same line with the last substring...
1603 str_width(temp_value) <= max_last_string_column()
1604 or LL[string_idx + 1].type == token.COMMA
1606 last_line.append(rest_leaf)
1607 append_leaves(last_line, line, LL[string_idx + 1 :])
1609 # Otherwise, place the last substring on one line and everything
1610 # else on a line below that...
1612 last_line.append(rest_leaf)
1615 non_string_line = line.clone()
1616 append_leaves(non_string_line, line, LL[string_idx + 1 :])
1617 yield Ok(non_string_line)
1618 # Else the target string was the last leaf...
1620 last_line.append(rest_leaf)
1621 last_line.comments = line.comments.copy()
1624 def _iter_nameescape_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
1627 All ranges of @string which, if @string were to be split there,
1628 would result in the splitting of an \\N{...} expression (which is NOT
1631 # True - the previous backslash was unescaped
1632 # False - the previous backslash was escaped *or* there was no backslash
1633 previous_was_unescaped_backslash = False
1634 it = iter(enumerate(string))
1637 previous_was_unescaped_backslash = not previous_was_unescaped_backslash
1639 if not previous_was_unescaped_backslash or c != "N":
1640 previous_was_unescaped_backslash = False
1642 previous_was_unescaped_backslash = False
1644 begin = idx - 1 # the position of backslash before \N{...}
1650 # malformed nameescape expression?
1651 # should have been detected by AST parsing earlier...
1652 raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
1655 def _iter_fexpr_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
1658 All ranges of @string which, if @string were to be split there,
1659 would result in the splitting of an f-expression (which is NOT
1662 if "f" not in get_string_prefix(string).lower():
1664 yield from iter_fexpr_spans(string)
1666 def _get_illegal_split_indices(self, string: str) -> Set[Index]:
1667 illegal_indices: Set[Index] = set()
1669 self._iter_fexpr_slices(string),
1670 self._iter_nameescape_slices(string),
1672 for it in iterators:
1673 for begin, end in it:
1674 illegal_indices.update(range(begin, end + 1))
1675 return illegal_indices
1677 def _get_break_idx(self, string: str, max_break_idx: int) -> Optional[int]:
1679 This method contains the algorithm that StringSplitter uses to
1680 determine which character to split each string at.
1683 @string: The substring that we are attempting to split.
1684 @max_break_idx: The ideal break index. We will return this value if it
1685 meets all the necessary conditions. In the likely event that it
1686 doesn't we will try to find the closest index BELOW @max_break_idx
1687 that does. If that fails, we will expand our search by also
1688 considering all valid indices ABOVE @max_break_idx.
1691 * assert_is_leaf_string(@string)
1692 * 0 <= @max_break_idx < len(@string)
1695 break_idx, if an index is able to be found that meets all of the
1696 conditions listed in the 'Transformations' section of this classes'
1701 is_valid_index = is_valid_index_factory(string)
1703 assert is_valid_index(max_break_idx)
1704 assert_is_leaf_string(string)
1706 _illegal_split_indices = self._get_illegal_split_indices(string)
1708 def breaks_unsplittable_expression(i: Index) -> bool:
1711 True iff returning @i would result in the splitting of an
1712 unsplittable expression (which is NOT allowed).
1714 return i in _illegal_split_indices
1716 def passes_all_checks(i: Index) -> bool:
1719 True iff ALL of the conditions listed in the 'Transformations'
1720 section of this classes' docstring would be be met by returning @i.
1722 is_space = string[i] == " "
1723 is_split_safe = is_valid_index(i - 1) and string[i - 1] in SPLIT_SAFE_CHARS
1725 is_not_escaped = True
1727 while is_valid_index(j) and string[j] == "\\":
1728 is_not_escaped = not is_not_escaped
1732 len(string[i:]) >= self.MIN_SUBSTR_SIZE
1733 and len(string[:i]) >= self.MIN_SUBSTR_SIZE
1736 (is_space or is_split_safe)
1739 and not breaks_unsplittable_expression(i)
1742 # First, we check all indices BELOW @max_break_idx.
1743 break_idx = max_break_idx
1744 while is_valid_index(break_idx - 1) and not passes_all_checks(break_idx):
1747 if not passes_all_checks(break_idx):
1748 # If that fails, we check all indices ABOVE @max_break_idx.
1750 # If we are able to find a valid index here, the next line is going
1751 # to be longer than the specified line length, but it's probably
1752 # better than doing nothing at all.
1753 break_idx = max_break_idx + 1
1754 while is_valid_index(break_idx + 1) and not passes_all_checks(break_idx):
1757 if not is_valid_index(break_idx) or not passes_all_checks(break_idx):
1762 def _maybe_normalize_string_quotes(self, leaf: Leaf) -> None:
1763 if self.normalize_strings:
1764 leaf.value = normalize_string_quotes(leaf.value)
1766 def _normalize_f_string(self, string: str, prefix: str) -> str:
1769 * assert_is_leaf_string(@string)
1772 * If @string is an f-string that contains no f-expressions, we
1773 return a string identical to @string except that the 'f' prefix
1774 has been stripped and all double braces (i.e. '{{' or '}}') have
1775 been normalized (i.e. turned into '{' or '}').
1777 * Otherwise, we return @string.
1779 assert_is_leaf_string(string)
1781 if "f" in prefix and not fstring_contains_expr(string):
1782 new_prefix = prefix.replace("f", "")
1784 temp = string[len(prefix) :]
1785 temp = re.sub(r"\{\{", "{", temp)
1786 temp = re.sub(r"\}\}", "}", temp)
1789 return f"{new_prefix}{new_string}"
1793 def _get_string_operator_leaves(self, leaves: Iterable[Leaf]) -> List[Leaf]:
1796 string_op_leaves = []
1798 while LL[i].type in self.STRING_OPERATORS + [token.NAME]:
1799 prefix_leaf = Leaf(LL[i].type, str(LL[i]).strip())
1800 string_op_leaves.append(prefix_leaf)
1802 return string_op_leaves
1805 class StringParenWrapper(BaseStringSplitter, CustomSplitMapMixin):
1807 StringTransformer that wraps strings in parens and then splits at the LPAR.
1810 All of the requirements listed in BaseStringSplitter's docstring in
1811 addition to the requirements listed below:
1813 * The line is a return/yield statement, which returns/yields a string.
1815 * The line is part of a ternary expression (e.g. `x = y if cond else
1816 z`) such that the line starts with `else <string>`, where <string> is
1819 * The line is an assert statement, which ends with a string.
1821 * The line is an assignment statement (e.g. `x = <string>` or `x +=
1822 <string>`) such that the variable is being assigned the value of some
1825 * The line is a dictionary key assignment where some valid key is being
1826 assigned the value of some string.
1828 * The line is an lambda expression and the value is a string.
1830 * The line starts with an "atom" string that prefers to be wrapped in
1831 parens. It's preferred to be wrapped when it's is an immediate child of
1832 a list/set/tuple literal, AND the string is surrounded by commas (or is
1833 the first/last child).
1836 The chosen string is wrapped in parentheses and then split at the LPAR.
1838 We then have one line which ends with an LPAR and another line that
1839 starts with the chosen string. The latter line is then split again at
1840 the RPAR. This results in the RPAR (and possibly a trailing comma)
1841 being placed on its own line.
1843 NOTE: If any leaves exist to the right of the chosen string (except
1844 for a trailing comma, which would be placed after the RPAR), those
1845 leaves are placed inside the parentheses. In effect, the chosen
1846 string is not necessarily being "wrapped" by parentheses. We can,
1847 however, count on the LPAR being placed directly before the chosen
1850 In other words, StringParenWrapper creates "atom" strings. These
1851 can then be split again by StringSplitter, if necessary.
1854 In the event that a string line split by StringParenWrapper is
1855 changed such that it no longer needs to be given its own line,
1856 StringParenWrapper relies on StringParenStripper to clean up the
1857 parentheses it created.
1859 For "atom" strings that prefers to be wrapped in parens, it requires
1860 StringSplitter to hold the split until the string is wrapped in parens.
1863 def do_splitter_match(self, line: Line) -> TMatchResult:
1866 if line.leaves[-1].type in OPENING_BRACKETS:
1868 "Cannot wrap parens around a line that ends in an opening bracket."
1872 self._return_match(LL)
1873 or self._else_match(LL)
1874 or self._assert_match(LL)
1875 or self._assign_match(LL)
1876 or self._dict_or_lambda_match(LL)
1877 or self._prefer_paren_wrap_match(LL)
1880 if string_idx is not None:
1881 string_value = line.leaves[string_idx].value
1882 # If the string has neither spaces nor East Asian stops...
1884 char == " " or char in SPLIT_SAFE_CHARS for char in string_value
1886 # And will still violate the line length limit when split...
1887 max_string_width = self.line_length - ((line.depth + 1) * 4)
1888 if str_width(string_value) > max_string_width:
1889 # And has no associated custom splits...
1890 if not self.has_custom_splits(string_value):
1891 # Then we should NOT put this string on its own line.
1893 "We do not wrap long strings in parentheses when the"
1894 " resultant line would still be over the specified line"
1895 " length and can't be split further by StringSplitter."
1897 return Ok([string_idx])
1899 return TErr("This line does not contain any non-atomic strings.")
1902 def _return_match(LL: List[Leaf]) -> Optional[int]:
1905 string_idx such that @LL[string_idx] is equal to our target (i.e.
1906 matched) string, if this line matches the return/yield statement
1907 requirements listed in the 'Requirements' section of this classes'
1912 # If this line is apart of a return/yield statement and the first leaf
1913 # contains either the "return" or "yield" keywords...
1914 if parent_type(LL[0]) in [syms.return_stmt, syms.yield_expr] and LL[
1916 ].value in ["return", "yield"]:
1917 is_valid_index = is_valid_index_factory(LL)
1919 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1920 # The next visible leaf MUST contain a string...
1921 if is_valid_index(idx) and LL[idx].type == token.STRING:
1927 def _else_match(LL: List[Leaf]) -> Optional[int]:
1930 string_idx such that @LL[string_idx] is equal to our target (i.e.
1931 matched) string, if this line matches the ternary expression
1932 requirements listed in the 'Requirements' section of this classes'
1937 # If this line is apart of a ternary expression and the first leaf
1938 # contains the "else" keyword...
1940 parent_type(LL[0]) == syms.test
1941 and LL[0].type == token.NAME
1942 and LL[0].value == "else"
1944 is_valid_index = is_valid_index_factory(LL)
1946 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1947 # The next visible leaf MUST contain a string...
1948 if is_valid_index(idx) and LL[idx].type == token.STRING:
1954 def _assert_match(LL: List[Leaf]) -> Optional[int]:
1957 string_idx such that @LL[string_idx] is equal to our target (i.e.
1958 matched) string, if this line matches the assert statement
1959 requirements listed in the 'Requirements' section of this classes'
1964 # If this line is apart of an assert statement and the first leaf
1965 # contains the "assert" keyword...
1966 if parent_type(LL[0]) == syms.assert_stmt and LL[0].value == "assert":
1967 is_valid_index = is_valid_index_factory(LL)
1969 for i, leaf in enumerate(LL):
1970 # We MUST find a comma...
1971 if leaf.type == token.COMMA:
1972 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1974 # That comma MUST be followed by a string...
1975 if is_valid_index(idx) and LL[idx].type == token.STRING:
1978 # Skip the string trailer, if one exists.
1979 string_parser = StringParser()
1980 idx = string_parser.parse(LL, string_idx)
1982 # But no more leaves are allowed...
1983 if not is_valid_index(idx):
1989 def _assign_match(LL: List[Leaf]) -> Optional[int]:
1992 string_idx such that @LL[string_idx] is equal to our target (i.e.
1993 matched) string, if this line matches the assignment statement
1994 requirements listed in the 'Requirements' section of this classes'
1999 # If this line is apart of an expression statement or is a function
2000 # argument AND the first leaf contains a variable name...
2002 parent_type(LL[0]) in [syms.expr_stmt, syms.argument, syms.power]
2003 and LL[0].type == token.NAME
2005 is_valid_index = is_valid_index_factory(LL)
2007 for i, leaf in enumerate(LL):
2008 # We MUST find either an '=' or '+=' symbol...
2009 if leaf.type in [token.EQUAL, token.PLUSEQUAL]:
2010 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
2012 # That symbol MUST be followed by a string...
2013 if is_valid_index(idx) and LL[idx].type == token.STRING:
2016 # Skip the string trailer, if one exists.
2017 string_parser = StringParser()
2018 idx = string_parser.parse(LL, string_idx)
2020 # The next leaf MAY be a comma iff this line is apart
2021 # of a function argument...
2023 parent_type(LL[0]) == syms.argument
2024 and is_valid_index(idx)
2025 and LL[idx].type == token.COMMA
2029 # But no more leaves are allowed...
2030 if not is_valid_index(idx):
2036 def _dict_or_lambda_match(LL: List[Leaf]) -> Optional[int]:
2039 string_idx such that @LL[string_idx] is equal to our target (i.e.
2040 matched) string, if this line matches the dictionary key assignment
2041 statement or lambda expression requirements listed in the
2042 'Requirements' section of this classes' docstring.
2046 # If this line is a part of a dictionary key assignment or lambda expression...
2047 parent_types = [parent_type(LL[0]), parent_type(LL[0].parent)]
2048 if syms.dictsetmaker in parent_types or syms.lambdef in parent_types:
2049 is_valid_index = is_valid_index_factory(LL)
2051 for i, leaf in enumerate(LL):
2052 # We MUST find a colon, it can either be dict's or lambda's colon...
2053 if leaf.type == token.COLON and i < len(LL) - 1:
2054 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
2056 # That colon MUST be followed by a string...
2057 if is_valid_index(idx) and LL[idx].type == token.STRING:
2060 # Skip the string trailer, if one exists.
2061 string_parser = StringParser()
2062 idx = string_parser.parse(LL, string_idx)
2064 # That string MAY be followed by a comma...
2065 if is_valid_index(idx) and LL[idx].type == token.COMMA:
2068 # But no more leaves are allowed...
2069 if not is_valid_index(idx):
2075 self, line: Line, string_indices: List[int]
2076 ) -> Iterator[TResult[Line]]:
2078 assert len(string_indices) == 1, (
2079 f"{self.__class__.__name__} should only find one match at a time, found"
2080 f" {len(string_indices)}"
2082 string_idx = string_indices[0]
2084 is_valid_index = is_valid_index_factory(LL)
2085 insert_str_child = insert_str_child_factory(LL[string_idx])
2088 ends_with_comma = False
2089 if LL[comma_idx].type == token.COMMA:
2090 ends_with_comma = True
2092 leaves_to_steal_comments_from = [LL[string_idx]]
2094 leaves_to_steal_comments_from.append(LL[comma_idx])
2097 first_line = line.clone()
2098 left_leaves = LL[:string_idx]
2100 # We have to remember to account for (possibly invisible) LPAR and RPAR
2101 # leaves that already wrapped the target string. If these leaves do
2102 # exist, we will replace them with our own LPAR and RPAR leaves.
2103 old_parens_exist = False
2104 if left_leaves and left_leaves[-1].type == token.LPAR:
2105 old_parens_exist = True
2106 leaves_to_steal_comments_from.append(left_leaves[-1])
2109 append_leaves(first_line, line, left_leaves)
2111 lpar_leaf = Leaf(token.LPAR, "(")
2112 if old_parens_exist:
2113 replace_child(LL[string_idx - 1], lpar_leaf)
2115 insert_str_child(lpar_leaf)
2116 first_line.append(lpar_leaf)
2118 # We throw inline comments that were originally to the right of the
2119 # target string to the top line. They will now be shown to the right of
2121 for leaf in leaves_to_steal_comments_from:
2122 for comment_leaf in line.comments_after(leaf):
2123 first_line.append(comment_leaf, preformatted=True)
2125 yield Ok(first_line)
2127 # --- Middle (String) Line
2128 # We only need to yield one (possibly too long) string line, since the
2129 # `StringSplitter` will break it down further if necessary.
2130 string_value = LL[string_idx].value
2133 depth=line.depth + 1,
2134 inside_brackets=True,
2135 should_split_rhs=line.should_split_rhs,
2136 magic_trailing_comma=line.magic_trailing_comma,
2138 string_leaf = Leaf(token.STRING, string_value)
2139 insert_str_child(string_leaf)
2140 string_line.append(string_leaf)
2142 old_rpar_leaf = None
2143 if is_valid_index(string_idx + 1):
2144 right_leaves = LL[string_idx + 1 :]
2148 if old_parens_exist:
2149 assert right_leaves and right_leaves[-1].type == token.RPAR, (
2150 "Apparently, old parentheses do NOT exist?!"
2151 f" (left_leaves={left_leaves}, right_leaves={right_leaves})"
2153 old_rpar_leaf = right_leaves.pop()
2154 elif right_leaves and right_leaves[-1].type == token.RPAR:
2155 # Special case for lambda expressions as dict's value, e.g.:
2157 # "key": lambda x: f"formatted: {x},
2159 # After wrapping the dict's value with parentheses, the string is
2160 # followed by a RPAR but its opening bracket is lambda's, not
2162 # "key": (lambda x: f"formatted: {x}),
2163 opening_bracket = right_leaves[-1].opening_bracket
2164 if opening_bracket is not None and opening_bracket in left_leaves:
2165 index = left_leaves.index(opening_bracket)
2168 and index < len(left_leaves) - 1
2169 and left_leaves[index - 1].type == token.COLON
2170 and left_leaves[index + 1].value == "lambda"
2174 append_leaves(string_line, line, right_leaves)
2176 yield Ok(string_line)
2179 last_line = line.clone()
2180 last_line.bracket_tracker = first_line.bracket_tracker
2182 new_rpar_leaf = Leaf(token.RPAR, ")")
2183 if old_rpar_leaf is not None:
2184 replace_child(old_rpar_leaf, new_rpar_leaf)
2186 insert_str_child(new_rpar_leaf)
2187 last_line.append(new_rpar_leaf)
2189 # If the target string ended with a comma, we place this comma to the
2190 # right of the RPAR on the last line.
2192 comma_leaf = Leaf(token.COMMA, ",")
2193 replace_child(LL[comma_idx], comma_leaf)
2194 last_line.append(comma_leaf)
2201 A state machine that aids in parsing a string's "trailer", which can be
2202 either non-existent, an old-style formatting sequence (e.g. `% varX` or `%
2203 (varX, varY)`), or a method-call / attribute access (e.g. `.format(varX,
2206 NOTE: A new StringParser object MUST be instantiated for each string
2207 trailer we need to parse.
2210 We shall assume that `line` equals the `Line` object that corresponds
2211 to the following line of python code:
2213 x = "Some {}.".format("String") + some_other_string
2216 Furthermore, we will assume that `string_idx` is some index such that:
2218 assert line.leaves[string_idx].value == "Some {}."
2221 The following code snippet then holds:
2223 string_parser = StringParser()
2224 idx = string_parser.parse(line.leaves, string_idx)
2225 assert line.leaves[idx].type == token.PLUS
2229 DEFAULT_TOKEN: Final = 20210605
2231 # String Parser States
2236 SINGLE_FMT_ARG: Final = 5
2241 # Lookup Table for Next State
2242 _goto: Final[Dict[Tuple[ParserState, NodeType], ParserState]] = {
2243 # A string trailer may start with '.' OR '%'.
2244 (START, token.DOT): DOT,
2245 (START, token.PERCENT): PERCENT,
2246 (START, DEFAULT_TOKEN): DONE,
2247 # A '.' MUST be followed by an attribute or method name.
2248 (DOT, token.NAME): NAME,
2249 # A method name MUST be followed by an '(', whereas an attribute name
2250 # is the last symbol in the string trailer.
2251 (NAME, token.LPAR): LPAR,
2252 (NAME, DEFAULT_TOKEN): DONE,
2253 # A '%' symbol can be followed by an '(' or a single argument (e.g. a
2254 # string or variable name).
2255 (PERCENT, token.LPAR): LPAR,
2256 (PERCENT, DEFAULT_TOKEN): SINGLE_FMT_ARG,
2257 # If a '%' symbol is followed by a single argument, that argument is
2258 # the last leaf in the string trailer.
2259 (SINGLE_FMT_ARG, DEFAULT_TOKEN): DONE,
2260 # If present, a ')' symbol is the last symbol in a string trailer.
2261 # (NOTE: LPARS and nested RPARS are not included in this lookup table,
2262 # since they are treated as a special case by the parsing logic in this
2263 # classes' implementation.)
2264 (RPAR, DEFAULT_TOKEN): DONE,
2267 def __init__(self) -> None:
2268 self._state = self.START
2269 self._unmatched_lpars = 0
2271 def parse(self, leaves: List[Leaf], string_idx: int) -> int:
2274 * @leaves[@string_idx].type == token.STRING
2277 The index directly after the last leaf which is apart of the string
2278 trailer, if a "trailer" exists.
2280 @string_idx + 1, if no string "trailer" exists.
2282 assert leaves[string_idx].type == token.STRING
2284 idx = string_idx + 1
2285 while idx < len(leaves) and self._next_state(leaves[idx]):
2289 def _next_state(self, leaf: Leaf) -> bool:
2292 * On the first call to this function, @leaf MUST be the leaf that
2293 was directly after the string leaf in question (e.g. if our target
2294 string is `line.leaves[i]` then the first call to this method must
2295 be `line.leaves[i + 1]`).
2296 * On the next call to this function, the leaf parameter passed in
2297 MUST be the leaf directly following @leaf.
2300 True iff @leaf is apart of the string's trailer.
2302 # We ignore empty LPAR or RPAR leaves.
2303 if is_empty_par(leaf):
2306 next_token = leaf.type
2307 if next_token == token.LPAR:
2308 self._unmatched_lpars += 1
2310 current_state = self._state
2312 # The LPAR parser state is a special case. We will return True until we
2313 # find the matching RPAR token.
2314 if current_state == self.LPAR:
2315 if next_token == token.RPAR:
2316 self._unmatched_lpars -= 1
2317 if self._unmatched_lpars == 0:
2318 self._state = self.RPAR
2319 # Otherwise, we use a lookup table to determine the next state.
2321 # If the lookup table matches the current state to the next
2322 # token, we use the lookup table.
2323 if (current_state, next_token) in self._goto:
2324 self._state = self._goto[current_state, next_token]
2326 # Otherwise, we check if a the current state was assigned a
2328 if (current_state, self.DEFAULT_TOKEN) in self._goto:
2329 self._state = self._goto[current_state, self.DEFAULT_TOKEN]
2330 # If no default has been assigned, then this parser has a logic
2333 raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
2335 if self._state == self.DONE:
2341 def insert_str_child_factory(string_leaf: Leaf) -> Callable[[LN], None]:
2343 Factory for a convenience function that is used to orphan @string_leaf
2344 and then insert multiple new leaves into the same part of the node
2345 structure that @string_leaf had originally occupied.
2348 Let `string_leaf = Leaf(token.STRING, '"foo"')` and `N =
2349 string_leaf.parent`. Assume the node `N` has the following
2356 Leaf(STRING, '"foo"'),
2360 We then run the code snippet shown below.
2362 insert_str_child = insert_str_child_factory(string_leaf)
2364 lpar = Leaf(token.LPAR, '(')
2365 insert_str_child(lpar)
2367 bar = Leaf(token.STRING, '"bar"')
2368 insert_str_child(bar)
2370 rpar = Leaf(token.RPAR, ')')
2371 insert_str_child(rpar)
2374 After which point, it follows that `string_leaf.parent is None` and
2375 the node `N` now has the following structure:
2382 Leaf(STRING, '"bar"'),
2387 string_parent = string_leaf.parent
2388 string_child_idx = string_leaf.remove()
2390 def insert_str_child(child: LN) -> None:
2391 nonlocal string_child_idx
2393 assert string_parent is not None
2394 assert string_child_idx is not None
2396 string_parent.insert_child(string_child_idx, child)
2397 string_child_idx += 1
2399 return insert_str_child
2402 def is_valid_index_factory(seq: Sequence[Any]) -> Callable[[int], bool]:
2408 is_valid_index = is_valid_index_factory(my_list)
2410 assert is_valid_index(0)
2411 assert is_valid_index(2)
2413 assert not is_valid_index(3)
2414 assert not is_valid_index(-1)
2418 def is_valid_index(idx: int) -> bool:
2421 True iff @idx is positive AND seq[@idx] does NOT raise an
2424 return 0 <= idx < len(seq)
2426 return is_valid_index