All patches and comments are welcome. Please squash your changes to logical
commits before using git-format-patch and git-send-email to
patches@git.madduck.net.
If you'd read over the Git project's submission guidelines and adhered to them,
I'd be especially grateful.
2 String transformers that can split and merge strings.
6 from abc import ABC, abstractmethod
7 from collections import defaultdict
8 from dataclasses import dataclass
26 if sys.version_info < (3, 8):
27 from typing_extensions import Final, Literal
29 from typing import Literal, Final
31 from mypy_extensions import trait
33 from black.comments import contains_pragma_comment
34 from black.lines import Line, append_leaves
35 from black.mode import Feature
36 from black.nodes import (
43 is_part_of_annotation,
48 from black.rusty import Err, Ok, Result
49 from black.strings import (
50 assert_is_leaf_string,
53 normalize_string_quotes,
55 from blib2to3.pgen2 import token
56 from blib2to3.pytree import Leaf, Node
59 class CannotTransform(Exception):
60 """Base class for errors raised by Transformers."""
65 LN = Union[Leaf, Node]
66 Transformer = Callable[[Line, Collection[Feature]], Iterator[Line]]
71 TResult = Result[T, CannotTransform] # (T)ransform Result
72 TMatchResult = TResult[Index]
75 def TErr(err_msg: str) -> Err[CannotTransform]:
78 Convenience function used when working with the TResult type.
80 cant_transform = CannotTransform(err_msg)
81 return Err(cant_transform)
84 def hug_power_op(line: Line, features: Collection[Feature]) -> Iterator[Line]:
85 """A transformer which normalizes spacing around power operators."""
87 # Performance optimization to avoid unnecessary Leaf clones and other ops.
88 for leaf in line.leaves:
89 if leaf.type == token.DOUBLESTAR:
92 raise CannotTransform("No doublestar token was found in the line.")
94 def is_simple_lookup(index: int, step: Literal[1, -1]) -> bool:
95 # Brackets and parentheses indicate calls, subscripts, etc. ...
96 # basically stuff that doesn't count as "simple". Only a NAME lookup
97 # or dotted lookup (eg. NAME.NAME) is OK.
99 disallowed = {token.RPAR, token.RSQB}
101 disallowed = {token.LPAR, token.LSQB}
103 while 0 <= index < len(line.leaves):
104 current = line.leaves[index]
105 if current.type in disallowed:
107 if current.type not in {token.NAME, token.DOT} or current.value == "for":
108 # If the current token isn't disallowed, we'll assume this is simple as
109 # only the disallowed tokens are semantically attached to this lookup
110 # expression we're checking. Also, stop early if we hit the 'for' bit
111 # of a comprehension.
118 def is_simple_operand(index: int, kind: Literal["base", "exponent"]) -> bool:
119 # An operand is considered "simple" if's a NAME, a numeric CONSTANT, a simple
120 # lookup (see above), with or without a preceding unary operator.
121 start = line.leaves[index]
122 if start.type in {token.NAME, token.NUMBER}:
123 return is_simple_lookup(index, step=(1 if kind == "exponent" else -1))
125 if start.type in {token.PLUS, token.MINUS, token.TILDE}:
126 if line.leaves[index + 1].type in {token.NAME, token.NUMBER}:
127 # step is always one as bases with a preceding unary op will be checked
128 # for simplicity starting from the next token (so it'll hit the check
130 return is_simple_lookup(index + 1, step=1)
134 new_line = line.clone()
136 for idx, leaf in enumerate(line.leaves):
137 new_leaf = leaf.clone()
143 (0 < idx < len(line.leaves) - 1)
144 and leaf.type == token.DOUBLESTAR
145 and is_simple_operand(idx - 1, kind="base")
146 and line.leaves[idx - 1].value != "lambda"
147 and is_simple_operand(idx + 1, kind="exponent")
152 # We have to be careful to make a new line properly:
153 # - bracket related metadata must be maintained (handled by Line.append)
154 # - comments need to copied over, updating the leaf IDs they're attached to
155 new_line.append(new_leaf, preformatted=True)
156 for comment_leaf in line.comments_after(leaf):
157 new_line.append(comment_leaf, preformatted=True)
162 class StringTransformer(ABC):
164 An implementation of the Transformer protocol that relies on its
165 subclasses overriding the template methods `do_match(...)` and
168 This Transformer works exclusively on strings (for example, by merging
171 The following sections can be found among the docstrings of each concrete
172 StringTransformer subclass.
175 Which requirements must be met of the given Line for this
176 StringTransformer to be applied?
179 If the given Line meets all of the above requirements, which string
180 transformations can you expect to be applied to it by this
184 What contractual agreements does this StringTransformer have with other
185 StringTransfomers? Such collaborations should be eliminated/minimized
189 __name__: Final = "StringTransformer"
191 # Ideally this would be a dataclass, but unfortunately mypyc breaks when used with
193 def __init__(self, line_length: int, normalize_strings: bool) -> None:
194 self.line_length = line_length
195 self.normalize_strings = normalize_strings
198 def do_match(self, line: Line) -> TMatchResult:
201 * Ok(string_idx) such that `line.leaves[string_idx]` is our target
202 string, if a match was able to be made.
204 * Err(CannotTransform), if a match was not able to be made.
208 def do_transform(self, line: Line, string_idx: int) -> Iterator[TResult[Line]]:
211 * Ok(new_line) where new_line is the new transformed line.
213 * Err(CannotTransform) if the transformation failed for some reason. The
214 `do_match(...)` template method should usually be used to reject
215 the form of the given Line, but in some cases it is difficult to
216 know whether or not a Line meets the StringTransformer's
217 requirements until the transformation is already midway.
220 This method should NOT mutate @line directly, but it MAY mutate the
221 Line's underlying Node structure. (WARNING: If the underlying Node
222 structure IS altered, then this method should NOT be allowed to
223 yield an CannotTransform after that point.)
226 def __call__(self, line: Line, _features: Collection[Feature]) -> Iterator[Line]:
228 StringTransformer instances have a call signature that mirrors that of
229 the Transformer type.
232 CannotTransform(...) if the concrete StringTransformer class is unable
235 # Optimization to avoid calling `self.do_match(...)` when the line does
236 # not contain any string.
237 if not any(leaf.type == token.STRING for leaf in line.leaves):
238 raise CannotTransform("There are no strings in this line.")
240 match_result = self.do_match(line)
242 if isinstance(match_result, Err):
243 cant_transform = match_result.err()
244 raise CannotTransform(
245 f"The string transformer {self.__class__.__name__} does not recognize"
246 " this line as one that it can transform."
247 ) from cant_transform
249 string_idx = match_result.ok()
251 for line_result in self.do_transform(line, string_idx):
252 if isinstance(line_result, Err):
253 cant_transform = line_result.err()
254 raise CannotTransform(
255 "StringTransformer failed while attempting to transform string."
256 ) from cant_transform
257 line = line_result.ok()
263 """A custom (i.e. manual) string split.
265 A single CustomSplit instance represents a single substring.
268 Consider the following string:
275 This string will correspond to the following three CustomSplit instances:
277 CustomSplit(False, 16)
278 CustomSplit(False, 17)
279 CustomSplit(True, 16)
288 class CustomSplitMapMixin:
290 This mixin class is used to map merged strings to a sequence of
291 CustomSplits, which will then be used to re-split the strings iff none of
292 the resultant substrings go over the configured max line length.
295 _Key: ClassVar = Tuple[StringID, str]
296 _CUSTOM_SPLIT_MAP: ClassVar[Dict[_Key, Tuple[CustomSplit, ...]]] = defaultdict(
301 def _get_key(string: str) -> "CustomSplitMapMixin._Key":
304 A unique identifier that is used internally to map @string to a
305 group of custom splits.
307 return (id(string), string)
309 def add_custom_splits(
310 self, string: str, custom_splits: Iterable[CustomSplit]
312 """Custom Split Map Setter Method
315 Adds a mapping from @string to the custom splits @custom_splits.
317 key = self._get_key(string)
318 self._CUSTOM_SPLIT_MAP[key] = tuple(custom_splits)
320 def pop_custom_splits(self, string: str) -> List[CustomSplit]:
321 """Custom Split Map Getter Method
324 * A list of the custom splits that are mapped to @string, if any
330 Deletes the mapping between @string and its associated custom
331 splits (which are returned to the caller).
333 key = self._get_key(string)
335 custom_splits = self._CUSTOM_SPLIT_MAP[key]
336 del self._CUSTOM_SPLIT_MAP[key]
338 return list(custom_splits)
340 def has_custom_splits(self, string: str) -> bool:
343 True iff @string is associated with a set of custom splits.
345 key = self._get_key(string)
346 return key in self._CUSTOM_SPLIT_MAP
349 class StringMerger(StringTransformer, CustomSplitMapMixin):
350 """StringTransformer that merges strings together.
353 (A) The line contains adjacent strings such that ALL of the validation checks
354 listed in StringMerger._validate_msg(...)'s docstring pass.
356 (B) The line contains a string which uses line continuation backslashes.
359 Depending on which of the two requirements above where met, either:
361 (A) The string group associated with the target string is merged.
363 (B) All line-continuation backslashes are removed from the target string.
366 StringMerger provides custom split information to StringSplitter.
369 def do_match(self, line: Line) -> TMatchResult:
372 is_valid_index = is_valid_index_factory(LL)
374 for i, leaf in enumerate(LL):
376 leaf.type == token.STRING
377 and is_valid_index(i + 1)
378 and LL[i + 1].type == token.STRING
380 if is_part_of_annotation(leaf):
381 return TErr("String is part of type annotation.")
384 if leaf.type == token.STRING and "\\\n" in leaf.value:
387 return TErr("This line has no strings that need merging.")
389 def do_transform(self, line: Line, string_idx: int) -> Iterator[TResult[Line]]:
391 rblc_result = self._remove_backslash_line_continuation_chars(
394 if isinstance(rblc_result, Ok):
395 new_line = rblc_result.ok()
397 msg_result = self._merge_string_group(new_line, string_idx)
398 if isinstance(msg_result, Ok):
399 new_line = msg_result.ok()
401 if isinstance(rblc_result, Err) and isinstance(msg_result, Err):
402 msg_cant_transform = msg_result.err()
403 rblc_cant_transform = rblc_result.err()
404 cant_transform = CannotTransform(
405 "StringMerger failed to merge any strings in this line."
408 # Chain the errors together using `__cause__`.
409 msg_cant_transform.__cause__ = rblc_cant_transform
410 cant_transform.__cause__ = msg_cant_transform
412 yield Err(cant_transform)
417 def _remove_backslash_line_continuation_chars(
418 line: Line, string_idx: int
421 Merge strings that were split across multiple lines using
422 line-continuation backslashes.
425 Ok(new_line), if @line contains backslash line-continuation
428 Err(CannotTransform), otherwise.
432 string_leaf = LL[string_idx]
434 string_leaf.type == token.STRING
435 and "\\\n" in string_leaf.value
436 and not has_triple_quotes(string_leaf.value)
439 f"String leaf {string_leaf} does not contain any backslash line"
440 " continuation characters."
443 new_line = line.clone()
444 new_line.comments = line.comments.copy()
445 append_leaves(new_line, line, LL)
447 new_string_leaf = new_line.leaves[string_idx]
448 new_string_leaf.value = new_string_leaf.value.replace("\\\n", "")
452 def _merge_string_group(self, line: Line, string_idx: int) -> TResult[Line]:
454 Merges string group (i.e. set of adjacent strings) where the first
455 string in the group is `line.leaves[string_idx]`.
458 Ok(new_line), if ALL of the validation checks found in
459 _validate_msg(...) pass.
461 Err(CannotTransform), otherwise.
465 is_valid_index = is_valid_index_factory(LL)
467 vresult = self._validate_msg(line, string_idx)
468 if isinstance(vresult, Err):
471 # If the string group is wrapped inside an Atom node, we must make sure
472 # to later replace that Atom with our new (merged) string leaf.
473 atom_node = LL[string_idx].parent
475 # We will place BREAK_MARK in between every two substrings that we
476 # merge. We will then later go through our final result and use the
477 # various instances of BREAK_MARK we find to add the right values to
478 # the custom split map.
479 BREAK_MARK = "@@@@@ BLACK BREAKPOINT MARKER @@@@@"
481 QUOTE = LL[string_idx].value[-1]
483 def make_naked(string: str, string_prefix: str) -> str:
484 """Strip @string (i.e. make it a "naked" string)
487 * assert_is_leaf_string(@string)
490 A string that is identical to @string except that
491 @string_prefix has been stripped, the surrounding QUOTE
492 characters have been removed, and any remaining QUOTE
493 characters have been escaped.
495 assert_is_leaf_string(string)
497 RE_EVEN_BACKSLASHES = r"(?:(?<!\\)(?:\\\\)*)"
498 naked_string = string[len(string_prefix) + 1 : -1]
499 naked_string = re.sub(
500 "(" + RE_EVEN_BACKSLASHES + ")" + QUOTE, r"\1\\" + QUOTE, naked_string
504 # Holds the CustomSplit objects that will later be added to the custom
508 # Temporary storage for the 'has_prefix' part of the CustomSplit objects.
511 # Sets the 'prefix' variable. This is the prefix that the final merged
513 next_str_idx = string_idx
517 and is_valid_index(next_str_idx)
518 and LL[next_str_idx].type == token.STRING
520 prefix = get_string_prefix(LL[next_str_idx].value).lower()
523 # The next loop merges the string group. The final string will be
526 # The following convenience variables are used:
531 # NSS: naked next string
535 next_str_idx = string_idx
536 while is_valid_index(next_str_idx) and LL[next_str_idx].type == token.STRING:
539 SS = LL[next_str_idx].value
540 next_prefix = get_string_prefix(SS).lower()
542 # If this is an f-string group but this substring is not prefixed
544 if "f" in prefix and "f" not in next_prefix:
545 # Then we must escape any braces contained in this substring.
546 SS = re.sub(r"(\{|\})", r"\1\1", SS)
548 NSS = make_naked(SS, next_prefix)
550 has_prefix = bool(next_prefix)
551 prefix_tracker.append(has_prefix)
553 S = prefix + QUOTE + NS + NSS + BREAK_MARK + QUOTE
554 NS = make_naked(S, prefix)
558 # Take a note on the index of the non-STRING leaf.
559 non_string_idx = next_str_idx
561 S_leaf = Leaf(token.STRING, S)
562 if self.normalize_strings:
563 S_leaf.value = normalize_string_quotes(S_leaf.value)
565 # Fill the 'custom_splits' list with the appropriate CustomSplit objects.
566 temp_string = S_leaf.value[len(prefix) + 1 : -1]
567 for has_prefix in prefix_tracker:
568 mark_idx = temp_string.find(BREAK_MARK)
571 ), "Logic error while filling the custom string breakpoint cache."
573 temp_string = temp_string[mark_idx + len(BREAK_MARK) :]
574 breakpoint_idx = mark_idx + (len(prefix) if has_prefix else 0) + 1
575 custom_splits.append(CustomSplit(has_prefix, breakpoint_idx))
577 string_leaf = Leaf(token.STRING, S_leaf.value.replace(BREAK_MARK, ""))
579 if atom_node is not None:
580 # If not all children of the atom node are merged (this can happen
581 # when there is a standalone comment in the middle) ...
582 if non_string_idx - string_idx < len(atom_node.children):
583 # We need to replace the old STRING leaves with the new string leaf.
584 first_child_idx = LL[string_idx].remove()
585 for idx in range(string_idx + 1, non_string_idx):
587 if first_child_idx is not None:
588 atom_node.insert_child(first_child_idx, string_leaf)
590 # Else replace the atom node with the new string leaf.
591 replace_child(atom_node, string_leaf)
593 # Build the final line ('new_line') that this method will later return.
594 new_line = line.clone()
595 for i, leaf in enumerate(LL):
597 new_line.append(string_leaf)
599 if string_idx <= i < string_idx + num_of_strings:
600 for comment_leaf in line.comments_after(LL[i]):
601 new_line.append(comment_leaf, preformatted=True)
604 append_leaves(new_line, line, [leaf])
606 self.add_custom_splits(string_leaf.value, custom_splits)
610 def _validate_msg(line: Line, string_idx: int) -> TResult[None]:
611 """Validate (M)erge (S)tring (G)roup
613 Transform-time string validation logic for _merge_string_group(...).
616 * Ok(None), if ALL validation checks (listed below) pass.
618 * Err(CannotTransform), if any of the following are true:
619 - The target string group does not contain ANY stand-alone comments.
620 - The target string is not in a string group (i.e. it has no
622 - The string group has more than one inline comment.
623 - The string group has an inline comment that appears to be a pragma.
624 - The set of all string prefixes in the string group is of
625 length greater than one and is not equal to {"", "f"}.
626 - The string group consists of raw strings.
627 - The string group is stringified type annotations. We don't want to
628 process stringified type annotations since pyright doesn't support
629 them spanning multiple string values. (NOTE: mypy, pytype, pyre do
630 support them, so we can change if pyright also gains support in the
631 future. See https://github.com/microsoft/pyright/issues/4359.)
633 # We first check for "inner" stand-alone comments (i.e. stand-alone
634 # comments that have a string leaf before them AND after them).
637 found_sa_comment = False
638 is_valid_index = is_valid_index_factory(line.leaves)
639 while is_valid_index(i) and line.leaves[i].type in [
643 if line.leaves[i].type == STANDALONE_COMMENT:
644 found_sa_comment = True
645 elif found_sa_comment:
647 "StringMerger does NOT merge string groups which contain "
648 "stand-alone comments."
653 num_of_inline_string_comments = 0
654 set_of_prefixes = set()
656 for leaf in line.leaves[string_idx:]:
657 if leaf.type != token.STRING:
658 # If the string group is trailed by a comma, we count the
659 # comments trailing the comma to be one of the string group's
661 if leaf.type == token.COMMA and id(leaf) in line.comments:
662 num_of_inline_string_comments += 1
665 if has_triple_quotes(leaf.value):
666 return TErr("StringMerger does NOT merge multiline strings.")
669 prefix = get_string_prefix(leaf.value).lower()
671 return TErr("StringMerger does NOT merge raw strings.")
673 set_of_prefixes.add(prefix)
675 if id(leaf) in line.comments:
676 num_of_inline_string_comments += 1
677 if contains_pragma_comment(line.comments[id(leaf)]):
678 return TErr("Cannot merge strings which have pragma comments.")
680 if num_of_strings < 2:
682 f"Not enough strings to merge (num_of_strings={num_of_strings})."
685 if num_of_inline_string_comments > 1:
687 f"Too many inline string comments ({num_of_inline_string_comments})."
690 if len(set_of_prefixes) > 1 and set_of_prefixes != {"", "f"}:
691 return TErr(f"Too many different prefixes ({set_of_prefixes}).")
696 class StringParenStripper(StringTransformer):
697 """StringTransformer that strips surrounding parentheses from strings.
700 The line contains a string which is surrounded by parentheses and:
701 - The target string is NOT the only argument to a function call.
702 - The target string is NOT a "pointless" string.
703 - If the target string contains a PERCENT, the brackets are not
704 preceded or followed by an operator with higher precedence than
708 The parentheses mentioned in the 'Requirements' section are stripped.
711 StringParenStripper has its own inherent usefulness, but it is also
712 relied on to clean up the parentheses created by StringParenWrapper (in
713 the event that they are no longer needed).
716 def do_match(self, line: Line) -> TMatchResult:
719 is_valid_index = is_valid_index_factory(LL)
721 for idx, leaf in enumerate(LL):
722 # Should be a string...
723 if leaf.type != token.STRING:
726 # If this is a "pointless" string...
729 and leaf.parent.parent
730 and leaf.parent.parent.type == syms.simple_stmt
734 # Should be preceded by a non-empty LPAR...
736 not is_valid_index(idx - 1)
737 or LL[idx - 1].type != token.LPAR
738 or is_empty_lpar(LL[idx - 1])
742 # That LPAR should NOT be preceded by a function name or a closing
743 # bracket (which could be a function which returns a function or a
744 # list/dictionary that contains a function)...
745 if is_valid_index(idx - 2) and (
746 LL[idx - 2].type == token.NAME or LL[idx - 2].type in CLOSING_BRACKETS
752 # Skip the string trailer, if one exists.
753 string_parser = StringParser()
754 next_idx = string_parser.parse(LL, string_idx)
756 # if the leaves in the parsed string include a PERCENT, we need to
757 # make sure the initial LPAR is NOT preceded by an operator with
758 # higher or equal precedence to PERCENT
759 if is_valid_index(idx - 2):
760 # mypy can't quite follow unless we name this
761 before_lpar = LL[idx - 2]
762 if token.PERCENT in {leaf.type for leaf in LL[idx - 1 : next_idx]} and (
779 # only unary PLUS/MINUS
781 and before_lpar.parent.type == syms.factor
782 and (before_lpar.type in {token.PLUS, token.MINUS})
787 # Should be followed by a non-empty RPAR...
789 is_valid_index(next_idx)
790 and LL[next_idx].type == token.RPAR
791 and not is_empty_rpar(LL[next_idx])
793 # That RPAR should NOT be followed by anything with higher
794 # precedence than PERCENT
795 if is_valid_index(next_idx + 1) and LL[next_idx + 1].type in {
803 return Ok(string_idx)
805 return TErr("This line has no strings wrapped in parens.")
807 def do_transform(self, line: Line, string_idx: int) -> Iterator[TResult[Line]]:
810 string_parser = StringParser()
811 rpar_idx = string_parser.parse(LL, string_idx)
813 for leaf in (LL[string_idx - 1], LL[rpar_idx]):
814 if line.comments_after(leaf):
816 "Will not strip parentheses which have comments attached to them."
820 new_line = line.clone()
821 new_line.comments = line.comments.copy()
822 append_leaves(new_line, line, LL[: string_idx - 1])
824 string_leaf = Leaf(token.STRING, LL[string_idx].value)
825 LL[string_idx - 1].remove()
826 replace_child(LL[string_idx], string_leaf)
827 new_line.append(string_leaf)
830 new_line, line, LL[string_idx + 1 : rpar_idx] + LL[rpar_idx + 1 :]
833 LL[rpar_idx].remove()
838 class BaseStringSplitter(StringTransformer):
840 Abstract class for StringTransformers which transform a Line's strings by splitting
841 them or placing them on their own lines where necessary to avoid going over
842 the configured line length.
845 * The target string value is responsible for the line going over the
846 line length limit. It follows that after all of black's other line
847 split methods have been exhausted, this line (or one of the resulting
848 lines after all line splits are performed) would still be over the
849 line_length limit unless we split this string.
851 * The target string is NOT a "pointless" string (i.e. a string that has
852 no parent or siblings).
854 * The target string is not followed by an inline comment that appears
857 * The target string is not a multiline (i.e. triple-quote) string.
860 STRING_OPERATORS: Final = [
873 def do_splitter_match(self, line: Line) -> TMatchResult:
875 BaseStringSplitter asks its clients to override this method instead of
876 `StringTransformer.do_match(...)`.
878 Follows the same protocol as `StringTransformer.do_match(...)`.
880 Refer to `help(StringTransformer.do_match)` for more information.
883 def do_match(self, line: Line) -> TMatchResult:
884 match_result = self.do_splitter_match(line)
885 if isinstance(match_result, Err):
888 string_idx = match_result.ok()
889 vresult = self._validate(line, string_idx)
890 if isinstance(vresult, Err):
895 def _validate(self, line: Line, string_idx: int) -> TResult[None]:
897 Checks that @line meets all of the requirements listed in this classes'
898 docstring. Refer to `help(BaseStringSplitter)` for a detailed
899 description of those requirements.
902 * Ok(None), if ALL of the requirements are met.
904 * Err(CannotTransform), if ANY of the requirements are NOT met.
908 string_leaf = LL[string_idx]
910 max_string_length = self._get_max_string_length(line, string_idx)
911 if len(string_leaf.value) <= max_string_length:
913 "The string itself is not what is causing this line to be too long."
916 if not string_leaf.parent or [L.type for L in string_leaf.parent.children] == [
921 f"This string ({string_leaf.value}) appears to be pointless (i.e. has"
925 if id(line.leaves[string_idx]) in line.comments and contains_pragma_comment(
926 line.comments[id(line.leaves[string_idx])]
929 "Line appears to end with an inline pragma comment. Splitting the line"
930 " could modify the pragma's behavior."
933 if has_triple_quotes(string_leaf.value):
934 return TErr("We cannot split multiline strings.")
938 def _get_max_string_length(self, line: Line, string_idx: int) -> int:
940 Calculates the max string length used when attempting to determine
941 whether or not the target string is responsible for causing the line to
942 go over the line length limit.
944 WARNING: This method is tightly coupled to both StringSplitter and
945 (especially) StringParenWrapper. There is probably a better way to
946 accomplish what is being done here.
949 max_string_length: such that `line.leaves[string_idx].value >
950 max_string_length` implies that the target string IS responsible
951 for causing this line to exceed the line length limit.
955 is_valid_index = is_valid_index_factory(LL)
957 # We use the shorthand "WMA4" in comments to abbreviate "We must
958 # account for". When giving examples, we use STRING to mean some/any
961 # Finally, we use the following convenience variables:
963 # P: The leaf that is before the target string leaf.
964 # N: The leaf that is after the target string leaf.
965 # NN: The leaf that is after N.
967 # WMA4 the whitespace at the beginning of the line.
968 offset = line.depth * 4
970 if is_valid_index(string_idx - 1):
971 p_idx = string_idx - 1
973 LL[string_idx - 1].type == token.LPAR
974 and LL[string_idx - 1].value == ""
977 # If the previous leaf is an empty LPAR placeholder, we should skip it.
981 if P.type in self.STRING_OPERATORS:
982 # WMA4 a space and a string operator (e.g. `+ STRING` or `== STRING`).
983 offset += len(str(P)) + 1
985 if P.type == token.COMMA:
986 # WMA4 a space, a comma, and a closing bracket [e.g. `), STRING`].
989 if P.type in [token.COLON, token.EQUAL, token.PLUSEQUAL, token.NAME]:
990 # This conditional branch is meant to handle dictionary keys,
991 # variable assignments, 'return STRING' statement lines, and
992 # 'else STRING' ternary expression lines.
994 # WMA4 a single space.
997 # WMA4 the lengths of any leaves that came before that space,
998 # but after any closing bracket before that space.
999 for leaf in reversed(LL[: p_idx + 1]):
1000 offset += len(str(leaf))
1001 if leaf.type in CLOSING_BRACKETS:
1004 if is_valid_index(string_idx + 1):
1005 N = LL[string_idx + 1]
1006 if N.type == token.RPAR and N.value == "" and len(LL) > string_idx + 2:
1007 # If the next leaf is an empty RPAR placeholder, we should skip it.
1008 N = LL[string_idx + 2]
1010 if N.type == token.COMMA:
1011 # WMA4 a single comma at the end of the string (e.g `STRING,`).
1014 if is_valid_index(string_idx + 2):
1015 NN = LL[string_idx + 2]
1017 if N.type == token.DOT and NN.type == token.NAME:
1018 # This conditional branch is meant to handle method calls invoked
1019 # off of a string literal up to and including the LPAR character.
1021 # WMA4 the '.' character.
1025 is_valid_index(string_idx + 3)
1026 and LL[string_idx + 3].type == token.LPAR
1028 # WMA4 the left parenthesis character.
1031 # WMA4 the length of the method's name.
1032 offset += len(NN.value)
1034 has_comments = False
1035 for comment_leaf in line.comments_after(LL[string_idx]):
1036 if not has_comments:
1038 # WMA4 two spaces before the '#' character.
1041 # WMA4 the length of the inline comment.
1042 offset += len(comment_leaf.value)
1044 max_string_length = self.line_length - offset
1045 return max_string_length
1048 def _prefer_paren_wrap_match(LL: List[Leaf]) -> Optional[int]:
1051 string_idx such that @LL[string_idx] is equal to our target (i.e.
1052 matched) string, if this line matches the "prefer paren wrap" statement
1053 requirements listed in the 'Requirements' section of the StringParenWrapper
1058 # The line must start with a string.
1059 if LL[0].type != token.STRING:
1062 # If the string is surrounded by commas (or is the first/last child)...
1063 prev_sibling = LL[0].prev_sibling
1064 next_sibling = LL[0].next_sibling
1065 if not prev_sibling and not next_sibling and parent_type(LL[0]) == syms.atom:
1066 # If it's an atom string, we need to check the parent atom's siblings.
1067 parent = LL[0].parent
1068 assert parent is not None # For type checkers.
1069 prev_sibling = parent.prev_sibling
1070 next_sibling = parent.next_sibling
1071 if (not prev_sibling or prev_sibling.type == token.COMMA) and (
1072 not next_sibling or next_sibling.type == token.COMMA
1079 def iter_fexpr_spans(s: str) -> Iterator[Tuple[int, int]]:
1081 Yields spans corresponding to expressions in a given f-string.
1082 Spans are half-open ranges (left inclusive, right exclusive).
1083 Assumes the input string is a valid f-string, but will not crash if the input
1086 stack: List[int] = [] # our curly paren stack
1090 # if we're in a string part of the f-string, ignore escaped curly braces
1091 if not stack and i + 1 < len(s) and s[i + 1] == "{":
1103 # we've made it back out of the expression! yield the span
1109 # if we're in an expression part of the f-string, fast forward through strings
1110 # note that backslashes are not legal in the expression portion of f-strings
1113 if s[i : i + 3] in ("'''", '"""'):
1114 delim = s[i : i + 3]
1115 elif s[i] in ("'", '"'):
1119 while i < len(s) and s[i : i + len(delim)] != delim:
1126 def fstring_contains_expr(s: str) -> bool:
1127 return any(iter_fexpr_spans(s))
1130 class StringSplitter(BaseStringSplitter, CustomSplitMapMixin):
1132 StringTransformer that splits "atom" strings (i.e. strings which exist on
1133 lines by themselves).
1136 * The line consists ONLY of a single string (possibly prefixed by a
1137 string operator [e.g. '+' or '==']), MAYBE a string trailer, and MAYBE
1140 * All of the requirements listed in BaseStringSplitter's docstring.
1143 The string mentioned in the 'Requirements' section is split into as
1144 many substrings as necessary to adhere to the configured line length.
1146 In the final set of substrings, no substring should be smaller than
1147 MIN_SUBSTR_SIZE characters.
1149 The string will ONLY be split on spaces (i.e. each new substring should
1150 start with a space). Note that the string will NOT be split on a space
1151 which is escaped with a backslash.
1153 If the string is an f-string, it will NOT be split in the middle of an
1154 f-expression (e.g. in f"FooBar: {foo() if x else bar()}", {foo() if x
1155 else bar()} is an f-expression).
1157 If the string that is being split has an associated set of custom split
1158 records and those custom splits will NOT result in any line going over
1159 the configured line length, those custom splits are used. Otherwise the
1160 string is split as late as possible (from left-to-right) while still
1161 adhering to the transformation rules listed above.
1164 StringSplitter relies on StringMerger to construct the appropriate
1165 CustomSplit objects and add them to the custom split map.
1168 MIN_SUBSTR_SIZE: Final = 6
1170 def do_splitter_match(self, line: Line) -> TMatchResult:
1173 if self._prefer_paren_wrap_match(LL) is not None:
1174 return TErr("Line needs to be wrapped in parens first.")
1176 is_valid_index = is_valid_index_factory(LL)
1180 # The first two leaves MAY be the 'not in' keywords...
1183 and is_valid_index(idx + 1)
1184 and [LL[idx].type, LL[idx + 1].type] == [token.NAME, token.NAME]
1185 and str(LL[idx]) + str(LL[idx + 1]) == "not in"
1188 # Else the first leaf MAY be a string operator symbol or the 'in' keyword...
1189 elif is_valid_index(idx) and (
1190 LL[idx].type in self.STRING_OPERATORS
1191 or LL[idx].type == token.NAME
1192 and str(LL[idx]) == "in"
1196 # The next/first leaf MAY be an empty LPAR...
1197 if is_valid_index(idx) and is_empty_lpar(LL[idx]):
1200 # The next/first leaf MUST be a string...
1201 if not is_valid_index(idx) or LL[idx].type != token.STRING:
1202 return TErr("Line does not start with a string.")
1206 # Skip the string trailer, if one exists.
1207 string_parser = StringParser()
1208 idx = string_parser.parse(LL, string_idx)
1210 # That string MAY be followed by an empty RPAR...
1211 if is_valid_index(idx) and is_empty_rpar(LL[idx]):
1214 # That string / empty RPAR leaf MAY be followed by a comma...
1215 if is_valid_index(idx) and LL[idx].type == token.COMMA:
1218 # But no more leaves are allowed...
1219 if is_valid_index(idx):
1220 return TErr("This line does not end with a string.")
1222 return Ok(string_idx)
1224 def do_transform(self, line: Line, string_idx: int) -> Iterator[TResult[Line]]:
1227 QUOTE = LL[string_idx].value[-1]
1229 is_valid_index = is_valid_index_factory(LL)
1230 insert_str_child = insert_str_child_factory(LL[string_idx])
1232 prefix = get_string_prefix(LL[string_idx].value).lower()
1234 # We MAY choose to drop the 'f' prefix from substrings that don't
1235 # contain any f-expressions, but ONLY if the original f-string
1236 # contains at least one f-expression. Otherwise, we will alter the AST
1238 drop_pointless_f_prefix = ("f" in prefix) and fstring_contains_expr(
1239 LL[string_idx].value
1242 first_string_line = True
1244 string_op_leaves = self._get_string_operator_leaves(LL)
1245 string_op_leaves_length = (
1246 sum(len(str(prefix_leaf)) for prefix_leaf in string_op_leaves) + 1
1251 def maybe_append_string_operators(new_line: Line) -> None:
1254 If @line starts with a string operator and this is the first
1255 line we are constructing, this function appends the string
1256 operator to @new_line and replaces the old string operator leaf
1257 in the node structure. Otherwise this function does nothing.
1259 maybe_prefix_leaves = string_op_leaves if first_string_line else []
1260 for i, prefix_leaf in enumerate(maybe_prefix_leaves):
1261 replace_child(LL[i], prefix_leaf)
1262 new_line.append(prefix_leaf)
1265 is_valid_index(string_idx + 1) and LL[string_idx + 1].type == token.COMMA
1268 def max_last_string() -> int:
1271 The max allowed length of the string value used for the last
1272 line we will construct.
1274 result = self.line_length
1275 result -= line.depth * 4
1276 result -= 1 if ends_with_comma else 0
1277 result -= string_op_leaves_length
1280 # --- Calculate Max Break Index (for string value)
1281 # We start with the line length limit
1282 max_break_idx = self.line_length
1283 # The last index of a string of length N is N-1.
1285 # Leading whitespace is not present in the string value (e.g. Leaf.value).
1286 max_break_idx -= line.depth * 4
1287 if max_break_idx < 0:
1289 f"Unable to split {LL[string_idx].value} at such high of a line depth:"
1294 # Check if StringMerger registered any custom splits.
1295 custom_splits = self.pop_custom_splits(LL[string_idx].value)
1296 # We use them ONLY if none of them would produce lines that exceed the
1298 use_custom_breakpoints = bool(
1300 and all(csplit.break_idx <= max_break_idx for csplit in custom_splits)
1303 # Temporary storage for the remaining chunk of the string line that
1304 # can't fit onto the line currently being constructed.
1305 rest_value = LL[string_idx].value
1307 def more_splits_should_be_made() -> bool:
1310 True iff `rest_value` (the remaining string value from the last
1311 split), should be split again.
1313 if use_custom_breakpoints:
1314 return len(custom_splits) > 1
1316 return len(rest_value) > max_last_string()
1318 string_line_results: List[Ok[Line]] = []
1319 while more_splits_should_be_made():
1320 if use_custom_breakpoints:
1321 # Custom User Split (manual)
1322 csplit = custom_splits.pop(0)
1323 break_idx = csplit.break_idx
1325 # Algorithmic Split (automatic)
1326 max_bidx = max_break_idx - string_op_leaves_length
1327 maybe_break_idx = self._get_break_idx(rest_value, max_bidx)
1328 if maybe_break_idx is None:
1329 # If we are unable to algorithmically determine a good split
1330 # and this string has custom splits registered to it, we
1331 # fall back to using them--which means we have to start
1332 # over from the beginning.
1334 rest_value = LL[string_idx].value
1335 string_line_results = []
1336 first_string_line = True
1337 use_custom_breakpoints = True
1340 # Otherwise, we stop splitting here.
1343 break_idx = maybe_break_idx
1345 # --- Construct `next_value`
1346 next_value = rest_value[:break_idx] + QUOTE
1348 # HACK: The following 'if' statement is a hack to fix the custom
1349 # breakpoint index in the case of either: (a) substrings that were
1350 # f-strings but will have the 'f' prefix removed OR (b) substrings
1351 # that were not f-strings but will now become f-strings because of
1352 # redundant use of the 'f' prefix (i.e. none of the substrings
1353 # contain f-expressions but one or more of them had the 'f' prefix
1354 # anyway; in which case, we will prepend 'f' to _all_ substrings).
1356 # There is probably a better way to accomplish what is being done
1359 # If this substring is an f-string, we _could_ remove the 'f'
1360 # prefix, and the current custom split did NOT originally use a
1363 use_custom_breakpoints
1364 and not csplit.has_prefix
1366 # `next_value == prefix + QUOTE` happens when the custom
1367 # split is an empty string.
1368 next_value == prefix + QUOTE
1369 or next_value != self._normalize_f_string(next_value, prefix)
1372 # Then `csplit.break_idx` will be off by one after removing
1375 next_value = rest_value[:break_idx] + QUOTE
1377 if drop_pointless_f_prefix:
1378 next_value = self._normalize_f_string(next_value, prefix)
1380 # --- Construct `next_leaf`
1381 next_leaf = Leaf(token.STRING, next_value)
1382 insert_str_child(next_leaf)
1383 self._maybe_normalize_string_quotes(next_leaf)
1385 # --- Construct `next_line`
1386 next_line = line.clone()
1387 maybe_append_string_operators(next_line)
1388 next_line.append(next_leaf)
1389 string_line_results.append(Ok(next_line))
1391 rest_value = prefix + QUOTE + rest_value[break_idx:]
1392 first_string_line = False
1394 yield from string_line_results
1396 if drop_pointless_f_prefix:
1397 rest_value = self._normalize_f_string(rest_value, prefix)
1399 rest_leaf = Leaf(token.STRING, rest_value)
1400 insert_str_child(rest_leaf)
1402 # NOTE: I could not find a test case that verifies that the following
1403 # line is actually necessary, but it seems to be. Otherwise we risk
1404 # not normalizing the last substring, right?
1405 self._maybe_normalize_string_quotes(rest_leaf)
1407 last_line = line.clone()
1408 maybe_append_string_operators(last_line)
1410 # If there are any leaves to the right of the target string...
1411 if is_valid_index(string_idx + 1):
1412 # We use `temp_value` here to determine how long the last line
1413 # would be if we were to append all the leaves to the right of the
1414 # target string to the last string line.
1415 temp_value = rest_value
1416 for leaf in LL[string_idx + 1 :]:
1417 temp_value += str(leaf)
1418 if leaf.type == token.LPAR:
1421 # Try to fit them all on the same line with the last substring...
1423 len(temp_value) <= max_last_string()
1424 or LL[string_idx + 1].type == token.COMMA
1426 last_line.append(rest_leaf)
1427 append_leaves(last_line, line, LL[string_idx + 1 :])
1429 # Otherwise, place the last substring on one line and everything
1430 # else on a line below that...
1432 last_line.append(rest_leaf)
1435 non_string_line = line.clone()
1436 append_leaves(non_string_line, line, LL[string_idx + 1 :])
1437 yield Ok(non_string_line)
1438 # Else the target string was the last leaf...
1440 last_line.append(rest_leaf)
1441 last_line.comments = line.comments.copy()
1444 def _iter_nameescape_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
1447 All ranges of @string which, if @string were to be split there,
1448 would result in the splitting of an \\N{...} expression (which is NOT
1451 # True - the previous backslash was unescaped
1452 # False - the previous backslash was escaped *or* there was no backslash
1453 previous_was_unescaped_backslash = False
1454 it = iter(enumerate(string))
1457 previous_was_unescaped_backslash = not previous_was_unescaped_backslash
1459 if not previous_was_unescaped_backslash or c != "N":
1460 previous_was_unescaped_backslash = False
1462 previous_was_unescaped_backslash = False
1464 begin = idx - 1 # the position of backslash before \N{...}
1470 # malformed nameescape expression?
1471 # should have been detected by AST parsing earlier...
1472 raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
1475 def _iter_fexpr_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
1478 All ranges of @string which, if @string were to be split there,
1479 would result in the splitting of an f-expression (which is NOT
1482 if "f" not in get_string_prefix(string).lower():
1484 yield from iter_fexpr_spans(string)
1486 def _get_illegal_split_indices(self, string: str) -> Set[Index]:
1487 illegal_indices: Set[Index] = set()
1489 self._iter_fexpr_slices(string),
1490 self._iter_nameescape_slices(string),
1492 for it in iterators:
1493 for begin, end in it:
1494 illegal_indices.update(range(begin, end + 1))
1495 return illegal_indices
1497 def _get_break_idx(self, string: str, max_break_idx: int) -> Optional[int]:
1499 This method contains the algorithm that StringSplitter uses to
1500 determine which character to split each string at.
1503 @string: The substring that we are attempting to split.
1504 @max_break_idx: The ideal break index. We will return this value if it
1505 meets all the necessary conditions. In the likely event that it
1506 doesn't we will try to find the closest index BELOW @max_break_idx
1507 that does. If that fails, we will expand our search by also
1508 considering all valid indices ABOVE @max_break_idx.
1511 * assert_is_leaf_string(@string)
1512 * 0 <= @max_break_idx < len(@string)
1515 break_idx, if an index is able to be found that meets all of the
1516 conditions listed in the 'Transformations' section of this classes'
1521 is_valid_index = is_valid_index_factory(string)
1523 assert is_valid_index(max_break_idx)
1524 assert_is_leaf_string(string)
1526 _illegal_split_indices = self._get_illegal_split_indices(string)
1528 def breaks_unsplittable_expression(i: Index) -> bool:
1531 True iff returning @i would result in the splitting of an
1532 unsplittable expression (which is NOT allowed).
1534 return i in _illegal_split_indices
1536 def passes_all_checks(i: Index) -> bool:
1539 True iff ALL of the conditions listed in the 'Transformations'
1540 section of this classes' docstring would be be met by returning @i.
1542 is_space = string[i] == " "
1544 is_not_escaped = True
1546 while is_valid_index(j) and string[j] == "\\":
1547 is_not_escaped = not is_not_escaped
1551 len(string[i:]) >= self.MIN_SUBSTR_SIZE
1552 and len(string[:i]) >= self.MIN_SUBSTR_SIZE
1558 and not breaks_unsplittable_expression(i)
1561 # First, we check all indices BELOW @max_break_idx.
1562 break_idx = max_break_idx
1563 while is_valid_index(break_idx - 1) and not passes_all_checks(break_idx):
1566 if not passes_all_checks(break_idx):
1567 # If that fails, we check all indices ABOVE @max_break_idx.
1569 # If we are able to find a valid index here, the next line is going
1570 # to be longer than the specified line length, but it's probably
1571 # better than doing nothing at all.
1572 break_idx = max_break_idx + 1
1573 while is_valid_index(break_idx + 1) and not passes_all_checks(break_idx):
1576 if not is_valid_index(break_idx) or not passes_all_checks(break_idx):
1581 def _maybe_normalize_string_quotes(self, leaf: Leaf) -> None:
1582 if self.normalize_strings:
1583 leaf.value = normalize_string_quotes(leaf.value)
1585 def _normalize_f_string(self, string: str, prefix: str) -> str:
1588 * assert_is_leaf_string(@string)
1591 * If @string is an f-string that contains no f-expressions, we
1592 return a string identical to @string except that the 'f' prefix
1593 has been stripped and all double braces (i.e. '{{' or '}}') have
1594 been normalized (i.e. turned into '{' or '}').
1596 * Otherwise, we return @string.
1598 assert_is_leaf_string(string)
1600 if "f" in prefix and not fstring_contains_expr(string):
1601 new_prefix = prefix.replace("f", "")
1603 temp = string[len(prefix) :]
1604 temp = re.sub(r"\{\{", "{", temp)
1605 temp = re.sub(r"\}\}", "}", temp)
1608 return f"{new_prefix}{new_string}"
1612 def _get_string_operator_leaves(self, leaves: Iterable[Leaf]) -> List[Leaf]:
1615 string_op_leaves = []
1617 while LL[i].type in self.STRING_OPERATORS + [token.NAME]:
1618 prefix_leaf = Leaf(LL[i].type, str(LL[i]).strip())
1619 string_op_leaves.append(prefix_leaf)
1621 return string_op_leaves
1624 class StringParenWrapper(BaseStringSplitter, CustomSplitMapMixin):
1626 StringTransformer that wraps strings in parens and then splits at the LPAR.
1629 All of the requirements listed in BaseStringSplitter's docstring in
1630 addition to the requirements listed below:
1632 * The line is a return/yield statement, which returns/yields a string.
1634 * The line is part of a ternary expression (e.g. `x = y if cond else
1635 z`) such that the line starts with `else <string>`, where <string> is
1638 * The line is an assert statement, which ends with a string.
1640 * The line is an assignment statement (e.g. `x = <string>` or `x +=
1641 <string>`) such that the variable is being assigned the value of some
1644 * The line is a dictionary key assignment where some valid key is being
1645 assigned the value of some string.
1647 * The line is an lambda expression and the value is a string.
1649 * The line starts with an "atom" string that prefers to be wrapped in
1650 parens. It's preferred to be wrapped when the string is surrounded by
1651 commas (or is the first/last child).
1654 The chosen string is wrapped in parentheses and then split at the LPAR.
1656 We then have one line which ends with an LPAR and another line that
1657 starts with the chosen string. The latter line is then split again at
1658 the RPAR. This results in the RPAR (and possibly a trailing comma)
1659 being placed on its own line.
1661 NOTE: If any leaves exist to the right of the chosen string (except
1662 for a trailing comma, which would be placed after the RPAR), those
1663 leaves are placed inside the parentheses. In effect, the chosen
1664 string is not necessarily being "wrapped" by parentheses. We can,
1665 however, count on the LPAR being placed directly before the chosen
1668 In other words, StringParenWrapper creates "atom" strings. These
1669 can then be split again by StringSplitter, if necessary.
1672 In the event that a string line split by StringParenWrapper is
1673 changed such that it no longer needs to be given its own line,
1674 StringParenWrapper relies on StringParenStripper to clean up the
1675 parentheses it created.
1677 For "atom" strings that prefers to be wrapped in parens, it requires
1678 StringSplitter to hold the split until the string is wrapped in parens.
1681 def do_splitter_match(self, line: Line) -> TMatchResult:
1684 if line.leaves[-1].type in OPENING_BRACKETS:
1686 "Cannot wrap parens around a line that ends in an opening bracket."
1690 self._return_match(LL)
1691 or self._else_match(LL)
1692 or self._assert_match(LL)
1693 or self._assign_match(LL)
1694 or self._dict_or_lambda_match(LL)
1695 or self._prefer_paren_wrap_match(LL)
1698 if string_idx is not None:
1699 string_value = line.leaves[string_idx].value
1700 # If the string has no spaces...
1701 if " " not in string_value:
1702 # And will still violate the line length limit when split...
1703 max_string_length = self.line_length - ((line.depth + 1) * 4)
1704 if len(string_value) > max_string_length:
1705 # And has no associated custom splits...
1706 if not self.has_custom_splits(string_value):
1707 # Then we should NOT put this string on its own line.
1709 "We do not wrap long strings in parentheses when the"
1710 " resultant line would still be over the specified line"
1711 " length and can't be split further by StringSplitter."
1713 return Ok(string_idx)
1715 return TErr("This line does not contain any non-atomic strings.")
1718 def _return_match(LL: List[Leaf]) -> Optional[int]:
1721 string_idx such that @LL[string_idx] is equal to our target (i.e.
1722 matched) string, if this line matches the return/yield statement
1723 requirements listed in the 'Requirements' section of this classes'
1728 # If this line is apart of a return/yield statement and the first leaf
1729 # contains either the "return" or "yield" keywords...
1730 if parent_type(LL[0]) in [syms.return_stmt, syms.yield_expr] and LL[
1732 ].value in ["return", "yield"]:
1733 is_valid_index = is_valid_index_factory(LL)
1735 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1736 # The next visible leaf MUST contain a string...
1737 if is_valid_index(idx) and LL[idx].type == token.STRING:
1743 def _else_match(LL: List[Leaf]) -> Optional[int]:
1746 string_idx such that @LL[string_idx] is equal to our target (i.e.
1747 matched) string, if this line matches the ternary expression
1748 requirements listed in the 'Requirements' section of this classes'
1753 # If this line is apart of a ternary expression and the first leaf
1754 # contains the "else" keyword...
1756 parent_type(LL[0]) == syms.test
1757 and LL[0].type == token.NAME
1758 and LL[0].value == "else"
1760 is_valid_index = is_valid_index_factory(LL)
1762 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1763 # The next visible leaf MUST contain a string...
1764 if is_valid_index(idx) and LL[idx].type == token.STRING:
1770 def _assert_match(LL: List[Leaf]) -> Optional[int]:
1773 string_idx such that @LL[string_idx] is equal to our target (i.e.
1774 matched) string, if this line matches the assert statement
1775 requirements listed in the 'Requirements' section of this classes'
1780 # If this line is apart of an assert statement and the first leaf
1781 # contains the "assert" keyword...
1782 if parent_type(LL[0]) == syms.assert_stmt and LL[0].value == "assert":
1783 is_valid_index = is_valid_index_factory(LL)
1785 for i, leaf in enumerate(LL):
1786 # We MUST find a comma...
1787 if leaf.type == token.COMMA:
1788 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1790 # That comma MUST be followed by a string...
1791 if is_valid_index(idx) and LL[idx].type == token.STRING:
1794 # Skip the string trailer, if one exists.
1795 string_parser = StringParser()
1796 idx = string_parser.parse(LL, string_idx)
1798 # But no more leaves are allowed...
1799 if not is_valid_index(idx):
1805 def _assign_match(LL: List[Leaf]) -> Optional[int]:
1808 string_idx such that @LL[string_idx] is equal to our target (i.e.
1809 matched) string, if this line matches the assignment statement
1810 requirements listed in the 'Requirements' section of this classes'
1815 # If this line is apart of an expression statement or is a function
1816 # argument AND the first leaf contains a variable name...
1818 parent_type(LL[0]) in [syms.expr_stmt, syms.argument, syms.power]
1819 and LL[0].type == token.NAME
1821 is_valid_index = is_valid_index_factory(LL)
1823 for i, leaf in enumerate(LL):
1824 # We MUST find either an '=' or '+=' symbol...
1825 if leaf.type in [token.EQUAL, token.PLUSEQUAL]:
1826 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1828 # That symbol MUST be followed by a string...
1829 if is_valid_index(idx) and LL[idx].type == token.STRING:
1832 # Skip the string trailer, if one exists.
1833 string_parser = StringParser()
1834 idx = string_parser.parse(LL, string_idx)
1836 # The next leaf MAY be a comma iff this line is apart
1837 # of a function argument...
1839 parent_type(LL[0]) == syms.argument
1840 and is_valid_index(idx)
1841 and LL[idx].type == token.COMMA
1845 # But no more leaves are allowed...
1846 if not is_valid_index(idx):
1852 def _dict_or_lambda_match(LL: List[Leaf]) -> Optional[int]:
1855 string_idx such that @LL[string_idx] is equal to our target (i.e.
1856 matched) string, if this line matches the dictionary key assignment
1857 statement or lambda expression requirements listed in the
1858 'Requirements' section of this classes' docstring.
1862 # If this line is a part of a dictionary key assignment or lambda expression...
1863 parent_types = [parent_type(LL[0]), parent_type(LL[0].parent)]
1864 if syms.dictsetmaker in parent_types or syms.lambdef in parent_types:
1865 is_valid_index = is_valid_index_factory(LL)
1867 for i, leaf in enumerate(LL):
1868 # We MUST find a colon, it can either be dict's or lambda's colon...
1869 if leaf.type == token.COLON:
1870 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1872 # That colon MUST be followed by a string...
1873 if is_valid_index(idx) and LL[idx].type == token.STRING:
1876 # Skip the string trailer, if one exists.
1877 string_parser = StringParser()
1878 idx = string_parser.parse(LL, string_idx)
1880 # That string MAY be followed by a comma...
1881 if is_valid_index(idx) and LL[idx].type == token.COMMA:
1884 # But no more leaves are allowed...
1885 if not is_valid_index(idx):
1890 def do_transform(self, line: Line, string_idx: int) -> Iterator[TResult[Line]]:
1893 is_valid_index = is_valid_index_factory(LL)
1894 insert_str_child = insert_str_child_factory(LL[string_idx])
1897 ends_with_comma = False
1898 if LL[comma_idx].type == token.COMMA:
1899 ends_with_comma = True
1901 leaves_to_steal_comments_from = [LL[string_idx]]
1903 leaves_to_steal_comments_from.append(LL[comma_idx])
1906 first_line = line.clone()
1907 left_leaves = LL[:string_idx]
1909 # We have to remember to account for (possibly invisible) LPAR and RPAR
1910 # leaves that already wrapped the target string. If these leaves do
1911 # exist, we will replace them with our own LPAR and RPAR leaves.
1912 old_parens_exist = False
1913 if left_leaves and left_leaves[-1].type == token.LPAR:
1914 old_parens_exist = True
1915 leaves_to_steal_comments_from.append(left_leaves[-1])
1918 append_leaves(first_line, line, left_leaves)
1920 lpar_leaf = Leaf(token.LPAR, "(")
1921 if old_parens_exist:
1922 replace_child(LL[string_idx - 1], lpar_leaf)
1924 insert_str_child(lpar_leaf)
1925 first_line.append(lpar_leaf)
1927 # We throw inline comments that were originally to the right of the
1928 # target string to the top line. They will now be shown to the right of
1930 for leaf in leaves_to_steal_comments_from:
1931 for comment_leaf in line.comments_after(leaf):
1932 first_line.append(comment_leaf, preformatted=True)
1934 yield Ok(first_line)
1936 # --- Middle (String) Line
1937 # We only need to yield one (possibly too long) string line, since the
1938 # `StringSplitter` will break it down further if necessary.
1939 string_value = LL[string_idx].value
1942 depth=line.depth + 1,
1943 inside_brackets=True,
1944 should_split_rhs=line.should_split_rhs,
1945 magic_trailing_comma=line.magic_trailing_comma,
1947 string_leaf = Leaf(token.STRING, string_value)
1948 insert_str_child(string_leaf)
1949 string_line.append(string_leaf)
1951 old_rpar_leaf = None
1952 if is_valid_index(string_idx + 1):
1953 right_leaves = LL[string_idx + 1 :]
1957 if old_parens_exist:
1958 assert right_leaves and right_leaves[-1].type == token.RPAR, (
1959 "Apparently, old parentheses do NOT exist?!"
1960 f" (left_leaves={left_leaves}, right_leaves={right_leaves})"
1962 old_rpar_leaf = right_leaves.pop()
1963 elif right_leaves and right_leaves[-1].type == token.RPAR:
1964 # Special case for lambda expressions as dict's value, e.g.:
1966 # "key": lambda x: f"formatted: {x},
1968 # After wrapping the dict's value with parentheses, the string is
1969 # followed by a RPAR but its opening bracket is lambda's, not
1971 # "key": (lambda x: f"formatted: {x}),
1972 opening_bracket = right_leaves[-1].opening_bracket
1973 if opening_bracket is not None and opening_bracket in left_leaves:
1974 index = left_leaves.index(opening_bracket)
1977 and index < len(left_leaves) - 1
1978 and left_leaves[index - 1].type == token.COLON
1979 and left_leaves[index + 1].value == "lambda"
1983 append_leaves(string_line, line, right_leaves)
1985 yield Ok(string_line)
1988 last_line = line.clone()
1989 last_line.bracket_tracker = first_line.bracket_tracker
1991 new_rpar_leaf = Leaf(token.RPAR, ")")
1992 if old_rpar_leaf is not None:
1993 replace_child(old_rpar_leaf, new_rpar_leaf)
1995 insert_str_child(new_rpar_leaf)
1996 last_line.append(new_rpar_leaf)
1998 # If the target string ended with a comma, we place this comma to the
1999 # right of the RPAR on the last line.
2001 comma_leaf = Leaf(token.COMMA, ",")
2002 replace_child(LL[comma_idx], comma_leaf)
2003 last_line.append(comma_leaf)
2010 A state machine that aids in parsing a string's "trailer", which can be
2011 either non-existent, an old-style formatting sequence (e.g. `% varX` or `%
2012 (varX, varY)`), or a method-call / attribute access (e.g. `.format(varX,
2015 NOTE: A new StringParser object MUST be instantiated for each string
2016 trailer we need to parse.
2019 We shall assume that `line` equals the `Line` object that corresponds
2020 to the following line of python code:
2022 x = "Some {}.".format("String") + some_other_string
2025 Furthermore, we will assume that `string_idx` is some index such that:
2027 assert line.leaves[string_idx].value == "Some {}."
2030 The following code snippet then holds:
2032 string_parser = StringParser()
2033 idx = string_parser.parse(line.leaves, string_idx)
2034 assert line.leaves[idx].type == token.PLUS
2038 DEFAULT_TOKEN: Final = 20210605
2040 # String Parser States
2045 SINGLE_FMT_ARG: Final = 5
2050 # Lookup Table for Next State
2051 _goto: Final[Dict[Tuple[ParserState, NodeType], ParserState]] = {
2052 # A string trailer may start with '.' OR '%'.
2053 (START, token.DOT): DOT,
2054 (START, token.PERCENT): PERCENT,
2055 (START, DEFAULT_TOKEN): DONE,
2056 # A '.' MUST be followed by an attribute or method name.
2057 (DOT, token.NAME): NAME,
2058 # A method name MUST be followed by an '(', whereas an attribute name
2059 # is the last symbol in the string trailer.
2060 (NAME, token.LPAR): LPAR,
2061 (NAME, DEFAULT_TOKEN): DONE,
2062 # A '%' symbol can be followed by an '(' or a single argument (e.g. a
2063 # string or variable name).
2064 (PERCENT, token.LPAR): LPAR,
2065 (PERCENT, DEFAULT_TOKEN): SINGLE_FMT_ARG,
2066 # If a '%' symbol is followed by a single argument, that argument is
2067 # the last leaf in the string trailer.
2068 (SINGLE_FMT_ARG, DEFAULT_TOKEN): DONE,
2069 # If present, a ')' symbol is the last symbol in a string trailer.
2070 # (NOTE: LPARS and nested RPARS are not included in this lookup table,
2071 # since they are treated as a special case by the parsing logic in this
2072 # classes' implementation.)
2073 (RPAR, DEFAULT_TOKEN): DONE,
2076 def __init__(self) -> None:
2077 self._state = self.START
2078 self._unmatched_lpars = 0
2080 def parse(self, leaves: List[Leaf], string_idx: int) -> int:
2083 * @leaves[@string_idx].type == token.STRING
2086 The index directly after the last leaf which is apart of the string
2087 trailer, if a "trailer" exists.
2089 @string_idx + 1, if no string "trailer" exists.
2091 assert leaves[string_idx].type == token.STRING
2093 idx = string_idx + 1
2094 while idx < len(leaves) and self._next_state(leaves[idx]):
2098 def _next_state(self, leaf: Leaf) -> bool:
2101 * On the first call to this function, @leaf MUST be the leaf that
2102 was directly after the string leaf in question (e.g. if our target
2103 string is `line.leaves[i]` then the first call to this method must
2104 be `line.leaves[i + 1]`).
2105 * On the next call to this function, the leaf parameter passed in
2106 MUST be the leaf directly following @leaf.
2109 True iff @leaf is apart of the string's trailer.
2111 # We ignore empty LPAR or RPAR leaves.
2112 if is_empty_par(leaf):
2115 next_token = leaf.type
2116 if next_token == token.LPAR:
2117 self._unmatched_lpars += 1
2119 current_state = self._state
2121 # The LPAR parser state is a special case. We will return True until we
2122 # find the matching RPAR token.
2123 if current_state == self.LPAR:
2124 if next_token == token.RPAR:
2125 self._unmatched_lpars -= 1
2126 if self._unmatched_lpars == 0:
2127 self._state = self.RPAR
2128 # Otherwise, we use a lookup table to determine the next state.
2130 # If the lookup table matches the current state to the next
2131 # token, we use the lookup table.
2132 if (current_state, next_token) in self._goto:
2133 self._state = self._goto[current_state, next_token]
2135 # Otherwise, we check if a the current state was assigned a
2137 if (current_state, self.DEFAULT_TOKEN) in self._goto:
2138 self._state = self._goto[current_state, self.DEFAULT_TOKEN]
2139 # If no default has been assigned, then this parser has a logic
2142 raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
2144 if self._state == self.DONE:
2150 def insert_str_child_factory(string_leaf: Leaf) -> Callable[[LN], None]:
2152 Factory for a convenience function that is used to orphan @string_leaf
2153 and then insert multiple new leaves into the same part of the node
2154 structure that @string_leaf had originally occupied.
2157 Let `string_leaf = Leaf(token.STRING, '"foo"')` and `N =
2158 string_leaf.parent`. Assume the node `N` has the following
2165 Leaf(STRING, '"foo"'),
2169 We then run the code snippet shown below.
2171 insert_str_child = insert_str_child_factory(string_leaf)
2173 lpar = Leaf(token.LPAR, '(')
2174 insert_str_child(lpar)
2176 bar = Leaf(token.STRING, '"bar"')
2177 insert_str_child(bar)
2179 rpar = Leaf(token.RPAR, ')')
2180 insert_str_child(rpar)
2183 After which point, it follows that `string_leaf.parent is None` and
2184 the node `N` now has the following structure:
2191 Leaf(STRING, '"bar"'),
2196 string_parent = string_leaf.parent
2197 string_child_idx = string_leaf.remove()
2199 def insert_str_child(child: LN) -> None:
2200 nonlocal string_child_idx
2202 assert string_parent is not None
2203 assert string_child_idx is not None
2205 string_parent.insert_child(string_child_idx, child)
2206 string_child_idx += 1
2208 return insert_str_child
2211 def is_valid_index_factory(seq: Sequence[Any]) -> Callable[[int], bool]:
2217 is_valid_index = is_valid_index_factory(my_list)
2219 assert is_valid_index(0)
2220 assert is_valid_index(2)
2222 assert not is_valid_index(3)
2223 assert not is_valid_index(-1)
2227 def is_valid_index(idx: int) -> bool:
2230 True iff @idx is positive AND seq[@idx] does NOT raise an
2233 return 0 <= idx < len(seq)
2235 return is_valid_index