All patches and comments are welcome. Please squash your changes to logical
commits before using git-format-patch and git-send-email to
patches@git.madduck.net.
If you'd read over the Git project's submission guidelines and adhered to them,
I'd be especially grateful.
2 String transformers that can split and merge strings.
4 from abc import ABC, abstractmethod
5 from collections import defaultdict
6 from dataclasses import dataclass
23 from black.rusty import Result, Ok, Err
25 from black.mode import Feature
26 from black.nodes import syms, replace_child, parent_type
27 from black.nodes import is_empty_par, is_empty_lpar, is_empty_rpar
28 from black.nodes import OPENING_BRACKETS, CLOSING_BRACKETS, STANDALONE_COMMENT
29 from black.lines import Line, append_leaves
30 from black.brackets import BracketMatchError
31 from black.comments import contains_pragma_comment
32 from black.strings import has_triple_quotes, get_string_prefix, assert_is_leaf_string
33 from black.strings import normalize_string_quotes
35 from blib2to3.pytree import Leaf, Node
36 from blib2to3.pgen2 import token
39 class CannotTransform(Exception):
40 """Base class for errors raised by Transformers."""
45 LN = Union[Leaf, Node]
46 Transformer = Callable[[Line, Collection[Feature]], Iterator[Line]]
51 TResult = Result[T, CannotTransform] # (T)ransform Result
52 TMatchResult = TResult[Index]
55 def TErr(err_msg: str) -> Err[CannotTransform]:
58 Convenience function used when working with the TResult type.
60 cant_transform = CannotTransform(err_msg)
61 return Err(cant_transform)
64 @dataclass # type: ignore
65 class StringTransformer(ABC):
67 An implementation of the Transformer protocol that relies on its
68 subclasses overriding the template methods `do_match(...)` and
71 This Transformer works exclusively on strings (for example, by merging
74 The following sections can be found among the docstrings of each concrete
75 StringTransformer subclass.
78 Which requirements must be met of the given Line for this
79 StringTransformer to be applied?
82 If the given Line meets all of the above requirements, which string
83 transformations can you expect to be applied to it by this
87 What contractual agreements does this StringTransformer have with other
88 StringTransfomers? Such collaborations should be eliminated/minimized
93 normalize_strings: bool
94 __name__ = "StringTransformer"
97 def do_match(self, line: Line) -> TMatchResult:
100 * Ok(string_idx) such that `line.leaves[string_idx]` is our target
101 string, if a match was able to be made.
103 * Err(CannotTransform), if a match was not able to be made.
107 def do_transform(self, line: Line, string_idx: int) -> Iterator[TResult[Line]]:
110 * Ok(new_line) where new_line is the new transformed line.
112 * Err(CannotTransform) if the transformation failed for some reason. The
113 `do_match(...)` template method should usually be used to reject
114 the form of the given Line, but in some cases it is difficult to
115 know whether or not a Line meets the StringTransformer's
116 requirements until the transformation is already midway.
119 This method should NOT mutate @line directly, but it MAY mutate the
120 Line's underlying Node structure. (WARNING: If the underlying Node
121 structure IS altered, then this method should NOT be allowed to
122 yield an CannotTransform after that point.)
125 def __call__(self, line: Line, _features: Collection[Feature]) -> Iterator[Line]:
127 StringTransformer instances have a call signature that mirrors that of
128 the Transformer type.
131 CannotTransform(...) if the concrete StringTransformer class is unable
134 # Optimization to avoid calling `self.do_match(...)` when the line does
135 # not contain any string.
136 if not any(leaf.type == token.STRING for leaf in line.leaves):
137 raise CannotTransform("There are no strings in this line.")
139 match_result = self.do_match(line)
141 if isinstance(match_result, Err):
142 cant_transform = match_result.err()
143 raise CannotTransform(
144 f"The string transformer {self.__class__.__name__} does not recognize"
145 " this line as one that it can transform."
146 ) from cant_transform
148 string_idx = match_result.ok()
150 for line_result in self.do_transform(line, string_idx):
151 if isinstance(line_result, Err):
152 cant_transform = line_result.err()
153 raise CannotTransform(
154 "StringTransformer failed while attempting to transform string."
155 ) from cant_transform
156 line = line_result.ok()
162 """A custom (i.e. manual) string split.
164 A single CustomSplit instance represents a single substring.
167 Consider the following string:
174 This string will correspond to the following three CustomSplit instances:
176 CustomSplit(False, 16)
177 CustomSplit(False, 17)
178 CustomSplit(True, 16)
186 class CustomSplitMapMixin:
188 This mixin class is used to map merged strings to a sequence of
189 CustomSplits, which will then be used to re-split the strings iff none of
190 the resultant substrings go over the configured max line length.
193 _Key = Tuple[StringID, str]
194 _CUSTOM_SPLIT_MAP: Dict[_Key, Tuple[CustomSplit, ...]] = defaultdict(tuple)
197 def _get_key(string: str) -> "CustomSplitMapMixin._Key":
200 A unique identifier that is used internally to map @string to a
201 group of custom splits.
203 return (id(string), string)
205 def add_custom_splits(
206 self, string: str, custom_splits: Iterable[CustomSplit]
208 """Custom Split Map Setter Method
211 Adds a mapping from @string to the custom splits @custom_splits.
213 key = self._get_key(string)
214 self._CUSTOM_SPLIT_MAP[key] = tuple(custom_splits)
216 def pop_custom_splits(self, string: str) -> List[CustomSplit]:
217 """Custom Split Map Getter Method
220 * A list of the custom splits that are mapped to @string, if any
226 Deletes the mapping between @string and its associated custom
227 splits (which are returned to the caller).
229 key = self._get_key(string)
231 custom_splits = self._CUSTOM_SPLIT_MAP[key]
232 del self._CUSTOM_SPLIT_MAP[key]
234 return list(custom_splits)
236 def has_custom_splits(self, string: str) -> bool:
239 True iff @string is associated with a set of custom splits.
241 key = self._get_key(string)
242 return key in self._CUSTOM_SPLIT_MAP
245 class StringMerger(CustomSplitMapMixin, StringTransformer):
246 """StringTransformer that merges strings together.
249 (A) The line contains adjacent strings such that ALL of the validation checks
250 listed in StringMerger.__validate_msg(...)'s docstring pass.
252 (B) The line contains a string which uses line continuation backslashes.
255 Depending on which of the two requirements above where met, either:
257 (A) The string group associated with the target string is merged.
259 (B) All line-continuation backslashes are removed from the target string.
262 StringMerger provides custom split information to StringSplitter.
265 def do_match(self, line: Line) -> TMatchResult:
268 is_valid_index = is_valid_index_factory(LL)
270 for (i, leaf) in enumerate(LL):
272 leaf.type == token.STRING
273 and is_valid_index(i + 1)
274 and LL[i + 1].type == token.STRING
278 if leaf.type == token.STRING and "\\\n" in leaf.value:
281 return TErr("This line has no strings that need merging.")
283 def do_transform(self, line: Line, string_idx: int) -> Iterator[TResult[Line]]:
285 rblc_result = self._remove_backslash_line_continuation_chars(
288 if isinstance(rblc_result, Ok):
289 new_line = rblc_result.ok()
291 msg_result = self._merge_string_group(new_line, string_idx)
292 if isinstance(msg_result, Ok):
293 new_line = msg_result.ok()
295 if isinstance(rblc_result, Err) and isinstance(msg_result, Err):
296 msg_cant_transform = msg_result.err()
297 rblc_cant_transform = rblc_result.err()
298 cant_transform = CannotTransform(
299 "StringMerger failed to merge any strings in this line."
302 # Chain the errors together using `__cause__`.
303 msg_cant_transform.__cause__ = rblc_cant_transform
304 cant_transform.__cause__ = msg_cant_transform
306 yield Err(cant_transform)
311 def _remove_backslash_line_continuation_chars(
312 line: Line, string_idx: int
315 Merge strings that were split across multiple lines using
316 line-continuation backslashes.
319 Ok(new_line), if @line contains backslash line-continuation
322 Err(CannotTransform), otherwise.
326 string_leaf = LL[string_idx]
328 string_leaf.type == token.STRING
329 and "\\\n" in string_leaf.value
330 and not has_triple_quotes(string_leaf.value)
333 f"String leaf {string_leaf} does not contain any backslash line"
334 " continuation characters."
337 new_line = line.clone()
338 new_line.comments = line.comments.copy()
339 append_leaves(new_line, line, LL)
341 new_string_leaf = new_line.leaves[string_idx]
342 new_string_leaf.value = new_string_leaf.value.replace("\\\n", "")
346 def _merge_string_group(self, line: Line, string_idx: int) -> TResult[Line]:
348 Merges string group (i.e. set of adjacent strings) where the first
349 string in the group is `line.leaves[string_idx]`.
352 Ok(new_line), if ALL of the validation checks found in
353 __validate_msg(...) pass.
355 Err(CannotTransform), otherwise.
359 is_valid_index = is_valid_index_factory(LL)
361 vresult = self._validate_msg(line, string_idx)
362 if isinstance(vresult, Err):
365 # If the string group is wrapped inside an Atom node, we must make sure
366 # to later replace that Atom with our new (merged) string leaf.
367 atom_node = LL[string_idx].parent
369 # We will place BREAK_MARK in between every two substrings that we
370 # merge. We will then later go through our final result and use the
371 # various instances of BREAK_MARK we find to add the right values to
372 # the custom split map.
373 BREAK_MARK = "@@@@@ BLACK BREAKPOINT MARKER @@@@@"
375 QUOTE = LL[string_idx].value[-1]
377 def make_naked(string: str, string_prefix: str) -> str:
378 """Strip @string (i.e. make it a "naked" string)
381 * assert_is_leaf_string(@string)
384 A string that is identical to @string except that
385 @string_prefix has been stripped, the surrounding QUOTE
386 characters have been removed, and any remaining QUOTE
387 characters have been escaped.
389 assert_is_leaf_string(string)
391 RE_EVEN_BACKSLASHES = r"(?:(?<!\\)(?:\\\\)*)"
392 naked_string = string[len(string_prefix) + 1 : -1]
393 naked_string = re.sub(
394 "(" + RE_EVEN_BACKSLASHES + ")" + QUOTE, r"\1\\" + QUOTE, naked_string
398 # Holds the CustomSplit objects that will later be added to the custom
402 # Temporary storage for the 'has_prefix' part of the CustomSplit objects.
405 # Sets the 'prefix' variable. This is the prefix that the final merged
407 next_str_idx = string_idx
411 and is_valid_index(next_str_idx)
412 and LL[next_str_idx].type == token.STRING
414 prefix = get_string_prefix(LL[next_str_idx].value)
417 # The next loop merges the string group. The final string will be
420 # The following convenience variables are used:
425 # NSS: naked next string
429 next_str_idx = string_idx
430 while is_valid_index(next_str_idx) and LL[next_str_idx].type == token.STRING:
433 SS = LL[next_str_idx].value
434 next_prefix = get_string_prefix(SS)
436 # If this is an f-string group but this substring is not prefixed
438 if "f" in prefix and "f" not in next_prefix:
439 # Then we must escape any braces contained in this substring.
440 SS = re.subf(r"(\{|\})", "{1}{1}", SS)
442 NSS = make_naked(SS, next_prefix)
444 has_prefix = bool(next_prefix)
445 prefix_tracker.append(has_prefix)
447 S = prefix + QUOTE + NS + NSS + BREAK_MARK + QUOTE
448 NS = make_naked(S, prefix)
452 S_leaf = Leaf(token.STRING, S)
453 if self.normalize_strings:
454 S_leaf.value = normalize_string_quotes(S_leaf.value)
456 # Fill the 'custom_splits' list with the appropriate CustomSplit objects.
457 temp_string = S_leaf.value[len(prefix) + 1 : -1]
458 for has_prefix in prefix_tracker:
459 mark_idx = temp_string.find(BREAK_MARK)
462 ), "Logic error while filling the custom string breakpoint cache."
464 temp_string = temp_string[mark_idx + len(BREAK_MARK) :]
465 breakpoint_idx = mark_idx + (len(prefix) if has_prefix else 0) + 1
466 custom_splits.append(CustomSplit(has_prefix, breakpoint_idx))
468 string_leaf = Leaf(token.STRING, S_leaf.value.replace(BREAK_MARK, ""))
470 if atom_node is not None:
471 replace_child(atom_node, string_leaf)
473 # Build the final line ('new_line') that this method will later return.
474 new_line = line.clone()
475 for (i, leaf) in enumerate(LL):
477 new_line.append(string_leaf)
479 if string_idx <= i < string_idx + num_of_strings:
480 for comment_leaf in line.comments_after(LL[i]):
481 new_line.append(comment_leaf, preformatted=True)
484 append_leaves(new_line, line, [leaf])
486 self.add_custom_splits(string_leaf.value, custom_splits)
490 def _validate_msg(line: Line, string_idx: int) -> TResult[None]:
491 """Validate (M)erge (S)tring (G)roup
493 Transform-time string validation logic for __merge_string_group(...).
496 * Ok(None), if ALL validation checks (listed below) pass.
498 * Err(CannotTransform), if any of the following are true:
499 - The target string group does not contain ANY stand-alone comments.
500 - The target string is not in a string group (i.e. it has no
502 - The string group has more than one inline comment.
503 - The string group has an inline comment that appears to be a pragma.
504 - The set of all string prefixes in the string group is of
505 length greater than one and is not equal to {"", "f"}.
506 - The string group consists of raw strings.
508 # We first check for "inner" stand-alone comments (i.e. stand-alone
509 # comments that have a string leaf before them AND after them).
512 found_sa_comment = False
513 is_valid_index = is_valid_index_factory(line.leaves)
514 while is_valid_index(i) and line.leaves[i].type in [
518 if line.leaves[i].type == STANDALONE_COMMENT:
519 found_sa_comment = True
520 elif found_sa_comment:
522 "StringMerger does NOT merge string groups which contain "
523 "stand-alone comments."
528 num_of_inline_string_comments = 0
529 set_of_prefixes = set()
531 for leaf in line.leaves[string_idx:]:
532 if leaf.type != token.STRING:
533 # If the string group is trailed by a comma, we count the
534 # comments trailing the comma to be one of the string group's
536 if leaf.type == token.COMMA and id(leaf) in line.comments:
537 num_of_inline_string_comments += 1
540 if has_triple_quotes(leaf.value):
541 return TErr("StringMerger does NOT merge multiline strings.")
544 prefix = get_string_prefix(leaf.value)
546 return TErr("StringMerger does NOT merge raw strings.")
548 set_of_prefixes.add(prefix)
550 if id(leaf) in line.comments:
551 num_of_inline_string_comments += 1
552 if contains_pragma_comment(line.comments[id(leaf)]):
553 return TErr("Cannot merge strings which have pragma comments.")
555 if num_of_strings < 2:
557 f"Not enough strings to merge (num_of_strings={num_of_strings})."
560 if num_of_inline_string_comments > 1:
562 f"Too many inline string comments ({num_of_inline_string_comments})."
565 if len(set_of_prefixes) > 1 and set_of_prefixes != {"", "f"}:
566 return TErr(f"Too many different prefixes ({set_of_prefixes}).")
571 class StringParenStripper(StringTransformer):
572 """StringTransformer that strips surrounding parentheses from strings.
575 The line contains a string which is surrounded by parentheses and:
576 - The target string is NOT the only argument to a function call.
577 - The target string is NOT a "pointless" string.
578 - If the target string contains a PERCENT, the brackets are not
579 preceded or followed by an operator with higher precedence than
583 The parentheses mentioned in the 'Requirements' section are stripped.
586 StringParenStripper has its own inherent usefulness, but it is also
587 relied on to clean up the parentheses created by StringParenWrapper (in
588 the event that they are no longer needed).
591 def do_match(self, line: Line) -> TMatchResult:
594 is_valid_index = is_valid_index_factory(LL)
596 for (idx, leaf) in enumerate(LL):
597 # Should be a string...
598 if leaf.type != token.STRING:
601 # If this is a "pointless" string...
604 and leaf.parent.parent
605 and leaf.parent.parent.type == syms.simple_stmt
609 # Should be preceded by a non-empty LPAR...
611 not is_valid_index(idx - 1)
612 or LL[idx - 1].type != token.LPAR
613 or is_empty_lpar(LL[idx - 1])
617 # That LPAR should NOT be preceded by a function name or a closing
618 # bracket (which could be a function which returns a function or a
619 # list/dictionary that contains a function)...
620 if is_valid_index(idx - 2) and (
621 LL[idx - 2].type == token.NAME or LL[idx - 2].type in CLOSING_BRACKETS
627 # Skip the string trailer, if one exists.
628 string_parser = StringParser()
629 next_idx = string_parser.parse(LL, string_idx)
631 # if the leaves in the parsed string include a PERCENT, we need to
632 # make sure the initial LPAR is NOT preceded by an operator with
633 # higher or equal precedence to PERCENT
634 if is_valid_index(idx - 2):
635 # mypy can't quite follow unless we name this
636 before_lpar = LL[idx - 2]
637 if token.PERCENT in {leaf.type for leaf in LL[idx - 1 : next_idx]} and (
654 # only unary PLUS/MINUS
656 and before_lpar.parent.type == syms.factor
657 and (before_lpar.type in {token.PLUS, token.MINUS})
662 # Should be followed by a non-empty RPAR...
664 is_valid_index(next_idx)
665 and LL[next_idx].type == token.RPAR
666 and not is_empty_rpar(LL[next_idx])
668 # That RPAR should NOT be followed by anything with higher
669 # precedence than PERCENT
670 if is_valid_index(next_idx + 1) and LL[next_idx + 1].type in {
678 return Ok(string_idx)
680 return TErr("This line has no strings wrapped in parens.")
682 def do_transform(self, line: Line, string_idx: int) -> Iterator[TResult[Line]]:
685 string_parser = StringParser()
686 rpar_idx = string_parser.parse(LL, string_idx)
688 for leaf in (LL[string_idx - 1], LL[rpar_idx]):
689 if line.comments_after(leaf):
691 "Will not strip parentheses which have comments attached to them."
695 new_line = line.clone()
696 new_line.comments = line.comments.copy()
698 append_leaves(new_line, line, LL[: string_idx - 1])
699 except BracketMatchError:
700 # HACK: I believe there is currently a bug somewhere in
701 # right_hand_split() that is causing brackets to not be tracked
702 # properly by a shared BracketTracker.
703 append_leaves(new_line, line, LL[: string_idx - 1], preformatted=True)
705 string_leaf = Leaf(token.STRING, LL[string_idx].value)
706 LL[string_idx - 1].remove()
707 replace_child(LL[string_idx], string_leaf)
708 new_line.append(string_leaf)
711 new_line, line, LL[string_idx + 1 : rpar_idx] + LL[rpar_idx + 1 :]
714 LL[rpar_idx].remove()
719 class BaseStringSplitter(StringTransformer):
721 Abstract class for StringTransformers which transform a Line's strings by splitting
722 them or placing them on their own lines where necessary to avoid going over
723 the configured line length.
726 * The target string value is responsible for the line going over the
727 line length limit. It follows that after all of black's other line
728 split methods have been exhausted, this line (or one of the resulting
729 lines after all line splits are performed) would still be over the
730 line_length limit unless we split this string.
732 * The target string is NOT a "pointless" string (i.e. a string that has
733 no parent or siblings).
735 * The target string is not followed by an inline comment that appears
738 * The target string is not a multiline (i.e. triple-quote) string.
754 def do_splitter_match(self, line: Line) -> TMatchResult:
756 BaseStringSplitter asks its clients to override this method instead of
757 `StringTransformer.do_match(...)`.
759 Follows the same protocol as `StringTransformer.do_match(...)`.
761 Refer to `help(StringTransformer.do_match)` for more information.
764 def do_match(self, line: Line) -> TMatchResult:
765 match_result = self.do_splitter_match(line)
766 if isinstance(match_result, Err):
769 string_idx = match_result.ok()
770 vresult = self._validate(line, string_idx)
771 if isinstance(vresult, Err):
776 def _validate(self, line: Line, string_idx: int) -> TResult[None]:
778 Checks that @line meets all of the requirements listed in this classes'
779 docstring. Refer to `help(BaseStringSplitter)` for a detailed
780 description of those requirements.
783 * Ok(None), if ALL of the requirements are met.
785 * Err(CannotTransform), if ANY of the requirements are NOT met.
789 string_leaf = LL[string_idx]
791 max_string_length = self._get_max_string_length(line, string_idx)
792 if len(string_leaf.value) <= max_string_length:
794 "The string itself is not what is causing this line to be too long."
797 if not string_leaf.parent or [L.type for L in string_leaf.parent.children] == [
802 f"This string ({string_leaf.value}) appears to be pointless (i.e. has"
806 if id(line.leaves[string_idx]) in line.comments and contains_pragma_comment(
807 line.comments[id(line.leaves[string_idx])]
810 "Line appears to end with an inline pragma comment. Splitting the line"
811 " could modify the pragma's behavior."
814 if has_triple_quotes(string_leaf.value):
815 return TErr("We cannot split multiline strings.")
819 def _get_max_string_length(self, line: Line, string_idx: int) -> int:
821 Calculates the max string length used when attempting to determine
822 whether or not the target string is responsible for causing the line to
823 go over the line length limit.
825 WARNING: This method is tightly coupled to both StringSplitter and
826 (especially) StringParenWrapper. There is probably a better way to
827 accomplish what is being done here.
830 max_string_length: such that `line.leaves[string_idx].value >
831 max_string_length` implies that the target string IS responsible
832 for causing this line to exceed the line length limit.
836 is_valid_index = is_valid_index_factory(LL)
838 # We use the shorthand "WMA4" in comments to abbreviate "We must
839 # account for". When giving examples, we use STRING to mean some/any
842 # Finally, we use the following convenience variables:
844 # P: The leaf that is before the target string leaf.
845 # N: The leaf that is after the target string leaf.
846 # NN: The leaf that is after N.
848 # WMA4 the whitespace at the beginning of the line.
849 offset = line.depth * 4
851 if is_valid_index(string_idx - 1):
852 p_idx = string_idx - 1
854 LL[string_idx - 1].type == token.LPAR
855 and LL[string_idx - 1].value == ""
858 # If the previous leaf is an empty LPAR placeholder, we should skip it.
862 if P.type in self.STRING_OPERATORS:
863 # WMA4 a space and a string operator (e.g. `+ STRING` or `== STRING`).
864 offset += len(str(P)) + 1
866 if P.type == token.COMMA:
867 # WMA4 a space, a comma, and a closing bracket [e.g. `), STRING`].
870 if P.type in [token.COLON, token.EQUAL, token.NAME]:
871 # This conditional branch is meant to handle dictionary keys,
872 # variable assignments, 'return STRING' statement lines, and
873 # 'else STRING' ternary expression lines.
875 # WMA4 a single space.
878 # WMA4 the lengths of any leaves that came before that space,
879 # but after any closing bracket before that space.
880 for leaf in reversed(LL[: p_idx + 1]):
881 offset += len(str(leaf))
882 if leaf.type in CLOSING_BRACKETS:
885 if is_valid_index(string_idx + 1):
886 N = LL[string_idx + 1]
887 if N.type == token.RPAR and N.value == "" and len(LL) > string_idx + 2:
888 # If the next leaf is an empty RPAR placeholder, we should skip it.
889 N = LL[string_idx + 2]
891 if N.type == token.COMMA:
892 # WMA4 a single comma at the end of the string (e.g `STRING,`).
895 if is_valid_index(string_idx + 2):
896 NN = LL[string_idx + 2]
898 if N.type == token.DOT and NN.type == token.NAME:
899 # This conditional branch is meant to handle method calls invoked
900 # off of a string literal up to and including the LPAR character.
902 # WMA4 the '.' character.
906 is_valid_index(string_idx + 3)
907 and LL[string_idx + 3].type == token.LPAR
909 # WMA4 the left parenthesis character.
912 # WMA4 the length of the method's name.
913 offset += len(NN.value)
916 for comment_leaf in line.comments_after(LL[string_idx]):
919 # WMA4 two spaces before the '#' character.
922 # WMA4 the length of the inline comment.
923 offset += len(comment_leaf.value)
925 max_string_length = self.line_length - offset
926 return max_string_length
929 class StringSplitter(CustomSplitMapMixin, BaseStringSplitter):
931 StringTransformer that splits "atom" strings (i.e. strings which exist on
932 lines by themselves).
935 * The line consists ONLY of a single string (possibly prefixed by a
936 string operator [e.g. '+' or '==']), MAYBE a string trailer, and MAYBE
939 * All of the requirements listed in BaseStringSplitter's docstring.
942 The string mentioned in the 'Requirements' section is split into as
943 many substrings as necessary to adhere to the configured line length.
945 In the final set of substrings, no substring should be smaller than
946 MIN_SUBSTR_SIZE characters.
948 The string will ONLY be split on spaces (i.e. each new substring should
949 start with a space). Note that the string will NOT be split on a space
950 which is escaped with a backslash.
952 If the string is an f-string, it will NOT be split in the middle of an
953 f-expression (e.g. in f"FooBar: {foo() if x else bar()}", {foo() if x
954 else bar()} is an f-expression).
956 If the string that is being split has an associated set of custom split
957 records and those custom splits will NOT result in any line going over
958 the configured line length, those custom splits are used. Otherwise the
959 string is split as late as possible (from left-to-right) while still
960 adhering to the transformation rules listed above.
963 StringSplitter relies on StringMerger to construct the appropriate
964 CustomSplit objects and add them to the custom split map.
968 # Matches an "f-expression" (e.g. {var}) that might be found in an f-string.
970 (?<!\{) (?:\{\{)* \{ (?!\{)
980 def do_splitter_match(self, line: Line) -> TMatchResult:
983 is_valid_index = is_valid_index_factory(LL)
987 # The first two leaves MAY be the 'not in' keywords...
990 and is_valid_index(idx + 1)
991 and [LL[idx].type, LL[idx + 1].type] == [token.NAME, token.NAME]
992 and str(LL[idx]) + str(LL[idx + 1]) == "not in"
995 # Else the first leaf MAY be a string operator symbol or the 'in' keyword...
996 elif is_valid_index(idx) and (
997 LL[idx].type in self.STRING_OPERATORS
998 or LL[idx].type == token.NAME
999 and str(LL[idx]) == "in"
1003 # The next/first leaf MAY be an empty LPAR...
1004 if is_valid_index(idx) and is_empty_lpar(LL[idx]):
1007 # The next/first leaf MUST be a string...
1008 if not is_valid_index(idx) or LL[idx].type != token.STRING:
1009 return TErr("Line does not start with a string.")
1013 # Skip the string trailer, if one exists.
1014 string_parser = StringParser()
1015 idx = string_parser.parse(LL, string_idx)
1017 # That string MAY be followed by an empty RPAR...
1018 if is_valid_index(idx) and is_empty_rpar(LL[idx]):
1021 # That string / empty RPAR leaf MAY be followed by a comma...
1022 if is_valid_index(idx) and LL[idx].type == token.COMMA:
1025 # But no more leaves are allowed...
1026 if is_valid_index(idx):
1027 return TErr("This line does not end with a string.")
1029 return Ok(string_idx)
1031 def do_transform(self, line: Line, string_idx: int) -> Iterator[TResult[Line]]:
1034 QUOTE = LL[string_idx].value[-1]
1036 is_valid_index = is_valid_index_factory(LL)
1037 insert_str_child = insert_str_child_factory(LL[string_idx])
1039 prefix = get_string_prefix(LL[string_idx].value)
1041 # We MAY choose to drop the 'f' prefix from substrings that don't
1042 # contain any f-expressions, but ONLY if the original f-string
1043 # contains at least one f-expression. Otherwise, we will alter the AST
1045 drop_pointless_f_prefix = ("f" in prefix) and re.search(
1046 self.RE_FEXPR, LL[string_idx].value, re.VERBOSE
1049 first_string_line = True
1051 string_op_leaves = self._get_string_operator_leaves(LL)
1052 string_op_leaves_length = (
1053 sum([len(str(prefix_leaf)) for prefix_leaf in string_op_leaves]) + 1
1058 def maybe_append_string_operators(new_line: Line) -> None:
1061 If @line starts with a string operator and this is the first
1062 line we are constructing, this function appends the string
1063 operator to @new_line and replaces the old string operator leaf
1064 in the node structure. Otherwise this function does nothing.
1066 maybe_prefix_leaves = string_op_leaves if first_string_line else []
1067 for i, prefix_leaf in enumerate(maybe_prefix_leaves):
1068 replace_child(LL[i], prefix_leaf)
1069 new_line.append(prefix_leaf)
1072 is_valid_index(string_idx + 1) and LL[string_idx + 1].type == token.COMMA
1075 def max_last_string() -> int:
1078 The max allowed length of the string value used for the last
1079 line we will construct.
1081 result = self.line_length
1082 result -= line.depth * 4
1083 result -= 1 if ends_with_comma else 0
1084 result -= string_op_leaves_length
1087 # --- Calculate Max Break Index (for string value)
1088 # We start with the line length limit
1089 max_break_idx = self.line_length
1090 # The last index of a string of length N is N-1.
1092 # Leading whitespace is not present in the string value (e.g. Leaf.value).
1093 max_break_idx -= line.depth * 4
1094 if max_break_idx < 0:
1096 f"Unable to split {LL[string_idx].value} at such high of a line depth:"
1101 # Check if StringMerger registered any custom splits.
1102 custom_splits = self.pop_custom_splits(LL[string_idx].value)
1103 # We use them ONLY if none of them would produce lines that exceed the
1105 use_custom_breakpoints = bool(
1107 and all(csplit.break_idx <= max_break_idx for csplit in custom_splits)
1110 # Temporary storage for the remaining chunk of the string line that
1111 # can't fit onto the line currently being constructed.
1112 rest_value = LL[string_idx].value
1114 def more_splits_should_be_made() -> bool:
1117 True iff `rest_value` (the remaining string value from the last
1118 split), should be split again.
1120 if use_custom_breakpoints:
1121 return len(custom_splits) > 1
1123 return len(rest_value) > max_last_string()
1125 string_line_results: List[Ok[Line]] = []
1126 while more_splits_should_be_made():
1127 if use_custom_breakpoints:
1128 # Custom User Split (manual)
1129 csplit = custom_splits.pop(0)
1130 break_idx = csplit.break_idx
1132 # Algorithmic Split (automatic)
1133 max_bidx = max_break_idx - string_op_leaves_length
1134 maybe_break_idx = self._get_break_idx(rest_value, max_bidx)
1135 if maybe_break_idx is None:
1136 # If we are unable to algorithmically determine a good split
1137 # and this string has custom splits registered to it, we
1138 # fall back to using them--which means we have to start
1139 # over from the beginning.
1141 rest_value = LL[string_idx].value
1142 string_line_results = []
1143 first_string_line = True
1144 use_custom_breakpoints = True
1147 # Otherwise, we stop splitting here.
1150 break_idx = maybe_break_idx
1152 # --- Construct `next_value`
1153 next_value = rest_value[:break_idx] + QUOTE
1155 # Are we allowed to try to drop a pointless 'f' prefix?
1156 drop_pointless_f_prefix
1157 # If we are, will we be successful?
1158 and next_value != self._normalize_f_string(next_value, prefix)
1160 # If the current custom split did NOT originally use a prefix,
1161 # then `csplit.break_idx` will be off by one after removing
1165 if use_custom_breakpoints and not csplit.has_prefix
1168 next_value = rest_value[:break_idx] + QUOTE
1169 next_value = self._normalize_f_string(next_value, prefix)
1171 # --- Construct `next_leaf`
1172 next_leaf = Leaf(token.STRING, next_value)
1173 insert_str_child(next_leaf)
1174 self._maybe_normalize_string_quotes(next_leaf)
1176 # --- Construct `next_line`
1177 next_line = line.clone()
1178 maybe_append_string_operators(next_line)
1179 next_line.append(next_leaf)
1180 string_line_results.append(Ok(next_line))
1182 rest_value = prefix + QUOTE + rest_value[break_idx:]
1183 first_string_line = False
1185 yield from string_line_results
1187 if drop_pointless_f_prefix:
1188 rest_value = self._normalize_f_string(rest_value, prefix)
1190 rest_leaf = Leaf(token.STRING, rest_value)
1191 insert_str_child(rest_leaf)
1193 # NOTE: I could not find a test case that verifies that the following
1194 # line is actually necessary, but it seems to be. Otherwise we risk
1195 # not normalizing the last substring, right?
1196 self._maybe_normalize_string_quotes(rest_leaf)
1198 last_line = line.clone()
1199 maybe_append_string_operators(last_line)
1201 # If there are any leaves to the right of the target string...
1202 if is_valid_index(string_idx + 1):
1203 # We use `temp_value` here to determine how long the last line
1204 # would be if we were to append all the leaves to the right of the
1205 # target string to the last string line.
1206 temp_value = rest_value
1207 for leaf in LL[string_idx + 1 :]:
1208 temp_value += str(leaf)
1209 if leaf.type == token.LPAR:
1212 # Try to fit them all on the same line with the last substring...
1214 len(temp_value) <= max_last_string()
1215 or LL[string_idx + 1].type == token.COMMA
1217 last_line.append(rest_leaf)
1218 append_leaves(last_line, line, LL[string_idx + 1 :])
1220 # Otherwise, place the last substring on one line and everything
1221 # else on a line below that...
1223 last_line.append(rest_leaf)
1226 non_string_line = line.clone()
1227 append_leaves(non_string_line, line, LL[string_idx + 1 :])
1228 yield Ok(non_string_line)
1229 # Else the target string was the last leaf...
1231 last_line.append(rest_leaf)
1232 last_line.comments = line.comments.copy()
1235 def _get_break_idx(self, string: str, max_break_idx: int) -> Optional[int]:
1237 This method contains the algorithm that StringSplitter uses to
1238 determine which character to split each string at.
1241 @string: The substring that we are attempting to split.
1242 @max_break_idx: The ideal break index. We will return this value if it
1243 meets all the necessary conditions. In the likely event that it
1244 doesn't we will try to find the closest index BELOW @max_break_idx
1245 that does. If that fails, we will expand our search by also
1246 considering all valid indices ABOVE @max_break_idx.
1249 * assert_is_leaf_string(@string)
1250 * 0 <= @max_break_idx < len(@string)
1253 break_idx, if an index is able to be found that meets all of the
1254 conditions listed in the 'Transformations' section of this classes'
1259 is_valid_index = is_valid_index_factory(string)
1261 assert is_valid_index(max_break_idx)
1262 assert_is_leaf_string(string)
1264 _fexpr_slices: Optional[List[Tuple[Index, Index]]] = None
1266 def fexpr_slices() -> Iterator[Tuple[Index, Index]]:
1269 All ranges of @string which, if @string were to be split there,
1270 would result in the splitting of an f-expression (which is NOT
1273 nonlocal _fexpr_slices
1275 if _fexpr_slices is None:
1277 for match in re.finditer(self.RE_FEXPR, string, re.VERBOSE):
1278 _fexpr_slices.append(match.span())
1280 yield from _fexpr_slices
1282 is_fstring = "f" in get_string_prefix(string)
1284 def breaks_fstring_expression(i: Index) -> bool:
1287 True iff returning @i would result in the splitting of an
1288 f-expression (which is NOT allowed).
1293 for (start, end) in fexpr_slices():
1294 if start <= i < end:
1299 def passes_all_checks(i: Index) -> bool:
1302 True iff ALL of the conditions listed in the 'Transformations'
1303 section of this classes' docstring would be be met by returning @i.
1305 is_space = string[i] == " "
1307 is_not_escaped = True
1309 while is_valid_index(j) and string[j] == "\\":
1310 is_not_escaped = not is_not_escaped
1314 len(string[i:]) >= self.MIN_SUBSTR_SIZE
1315 and len(string[:i]) >= self.MIN_SUBSTR_SIZE
1321 and not breaks_fstring_expression(i)
1324 # First, we check all indices BELOW @max_break_idx.
1325 break_idx = max_break_idx
1326 while is_valid_index(break_idx - 1) and not passes_all_checks(break_idx):
1329 if not passes_all_checks(break_idx):
1330 # If that fails, we check all indices ABOVE @max_break_idx.
1332 # If we are able to find a valid index here, the next line is going
1333 # to be longer than the specified line length, but it's probably
1334 # better than doing nothing at all.
1335 break_idx = max_break_idx + 1
1336 while is_valid_index(break_idx + 1) and not passes_all_checks(break_idx):
1339 if not is_valid_index(break_idx) or not passes_all_checks(break_idx):
1344 def _maybe_normalize_string_quotes(self, leaf: Leaf) -> None:
1345 if self.normalize_strings:
1346 leaf.value = normalize_string_quotes(leaf.value)
1348 def _normalize_f_string(self, string: str, prefix: str) -> str:
1351 * assert_is_leaf_string(@string)
1354 * If @string is an f-string that contains no f-expressions, we
1355 return a string identical to @string except that the 'f' prefix
1356 has been stripped and all double braces (i.e. '{{' or '}}') have
1357 been normalized (i.e. turned into '{' or '}').
1359 * Otherwise, we return @string.
1361 assert_is_leaf_string(string)
1363 if "f" in prefix and not re.search(self.RE_FEXPR, string, re.VERBOSE):
1364 new_prefix = prefix.replace("f", "")
1366 temp = string[len(prefix) :]
1367 temp = re.sub(r"\{\{", "{", temp)
1368 temp = re.sub(r"\}\}", "}", temp)
1371 return f"{new_prefix}{new_string}"
1375 def _get_string_operator_leaves(self, leaves: Iterable[Leaf]) -> List[Leaf]:
1378 string_op_leaves = []
1380 while LL[i].type in self.STRING_OPERATORS + [token.NAME]:
1381 prefix_leaf = Leaf(LL[i].type, str(LL[i]).strip())
1382 string_op_leaves.append(prefix_leaf)
1384 return string_op_leaves
1387 class StringParenWrapper(CustomSplitMapMixin, BaseStringSplitter):
1389 StringTransformer that splits non-"atom" strings (i.e. strings that do not
1390 exist on lines by themselves).
1393 All of the requirements listed in BaseStringSplitter's docstring in
1394 addition to the requirements listed below:
1396 * The line is a return/yield statement, which returns/yields a string.
1398 * The line is part of a ternary expression (e.g. `x = y if cond else
1399 z`) such that the line starts with `else <string>`, where <string> is
1402 * The line is an assert statement, which ends with a string.
1404 * The line is an assignment statement (e.g. `x = <string>` or `x +=
1405 <string>`) such that the variable is being assigned the value of some
1408 * The line is a dictionary key assignment where some valid key is being
1409 assigned the value of some string.
1412 The chosen string is wrapped in parentheses and then split at the LPAR.
1414 We then have one line which ends with an LPAR and another line that
1415 starts with the chosen string. The latter line is then split again at
1416 the RPAR. This results in the RPAR (and possibly a trailing comma)
1417 being placed on its own line.
1419 NOTE: If any leaves exist to the right of the chosen string (except
1420 for a trailing comma, which would be placed after the RPAR), those
1421 leaves are placed inside the parentheses. In effect, the chosen
1422 string is not necessarily being "wrapped" by parentheses. We can,
1423 however, count on the LPAR being placed directly before the chosen
1426 In other words, StringParenWrapper creates "atom" strings. These
1427 can then be split again by StringSplitter, if necessary.
1430 In the event that a string line split by StringParenWrapper is
1431 changed such that it no longer needs to be given its own line,
1432 StringParenWrapper relies on StringParenStripper to clean up the
1433 parentheses it created.
1436 def do_splitter_match(self, line: Line) -> TMatchResult:
1439 if line.leaves[-1].type in OPENING_BRACKETS:
1441 "Cannot wrap parens around a line that ends in an opening bracket."
1445 self._return_match(LL)
1446 or self._else_match(LL)
1447 or self._assert_match(LL)
1448 or self._assign_match(LL)
1449 or self._dict_match(LL)
1452 if string_idx is not None:
1453 string_value = line.leaves[string_idx].value
1454 # If the string has no spaces...
1455 if " " not in string_value:
1456 # And will still violate the line length limit when split...
1457 max_string_length = self.line_length - ((line.depth + 1) * 4)
1458 if len(string_value) > max_string_length:
1459 # And has no associated custom splits...
1460 if not self.has_custom_splits(string_value):
1461 # Then we should NOT put this string on its own line.
1463 "We do not wrap long strings in parentheses when the"
1464 " resultant line would still be over the specified line"
1465 " length and can't be split further by StringSplitter."
1467 return Ok(string_idx)
1469 return TErr("This line does not contain any non-atomic strings.")
1472 def _return_match(LL: List[Leaf]) -> Optional[int]:
1475 string_idx such that @LL[string_idx] is equal to our target (i.e.
1476 matched) string, if this line matches the return/yield statement
1477 requirements listed in the 'Requirements' section of this classes'
1482 # If this line is apart of a return/yield statement and the first leaf
1483 # contains either the "return" or "yield" keywords...
1484 if parent_type(LL[0]) in [syms.return_stmt, syms.yield_expr] and LL[
1486 ].value in ["return", "yield"]:
1487 is_valid_index = is_valid_index_factory(LL)
1489 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1490 # The next visible leaf MUST contain a string...
1491 if is_valid_index(idx) and LL[idx].type == token.STRING:
1497 def _else_match(LL: List[Leaf]) -> Optional[int]:
1500 string_idx such that @LL[string_idx] is equal to our target (i.e.
1501 matched) string, if this line matches the ternary expression
1502 requirements listed in the 'Requirements' section of this classes'
1507 # If this line is apart of a ternary expression and the first leaf
1508 # contains the "else" keyword...
1510 parent_type(LL[0]) == syms.test
1511 and LL[0].type == token.NAME
1512 and LL[0].value == "else"
1514 is_valid_index = is_valid_index_factory(LL)
1516 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1517 # The next visible leaf MUST contain a string...
1518 if is_valid_index(idx) and LL[idx].type == token.STRING:
1524 def _assert_match(LL: List[Leaf]) -> Optional[int]:
1527 string_idx such that @LL[string_idx] is equal to our target (i.e.
1528 matched) string, if this line matches the assert statement
1529 requirements listed in the 'Requirements' section of this classes'
1534 # If this line is apart of an assert statement and the first leaf
1535 # contains the "assert" keyword...
1536 if parent_type(LL[0]) == syms.assert_stmt and LL[0].value == "assert":
1537 is_valid_index = is_valid_index_factory(LL)
1539 for (i, leaf) in enumerate(LL):
1540 # We MUST find a comma...
1541 if leaf.type == token.COMMA:
1542 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1544 # That comma MUST be followed by a string...
1545 if is_valid_index(idx) and LL[idx].type == token.STRING:
1548 # Skip the string trailer, if one exists.
1549 string_parser = StringParser()
1550 idx = string_parser.parse(LL, string_idx)
1552 # But no more leaves are allowed...
1553 if not is_valid_index(idx):
1559 def _assign_match(LL: List[Leaf]) -> Optional[int]:
1562 string_idx such that @LL[string_idx] is equal to our target (i.e.
1563 matched) string, if this line matches the assignment statement
1564 requirements listed in the 'Requirements' section of this classes'
1569 # If this line is apart of an expression statement or is a function
1570 # argument AND the first leaf contains a variable name...
1572 parent_type(LL[0]) in [syms.expr_stmt, syms.argument, syms.power]
1573 and LL[0].type == token.NAME
1575 is_valid_index = is_valid_index_factory(LL)
1577 for (i, leaf) in enumerate(LL):
1578 # We MUST find either an '=' or '+=' symbol...
1579 if leaf.type in [token.EQUAL, token.PLUSEQUAL]:
1580 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1582 # That symbol MUST be followed by a string...
1583 if is_valid_index(idx) and LL[idx].type == token.STRING:
1586 # Skip the string trailer, if one exists.
1587 string_parser = StringParser()
1588 idx = string_parser.parse(LL, string_idx)
1590 # The next leaf MAY be a comma iff this line is apart
1591 # of a function argument...
1593 parent_type(LL[0]) == syms.argument
1594 and is_valid_index(idx)
1595 and LL[idx].type == token.COMMA
1599 # But no more leaves are allowed...
1600 if not is_valid_index(idx):
1606 def _dict_match(LL: List[Leaf]) -> Optional[int]:
1609 string_idx such that @LL[string_idx] is equal to our target (i.e.
1610 matched) string, if this line matches the dictionary key assignment
1611 statement requirements listed in the 'Requirements' section of this
1616 # If this line is apart of a dictionary key assignment...
1617 if syms.dictsetmaker in [parent_type(LL[0]), parent_type(LL[0].parent)]:
1618 is_valid_index = is_valid_index_factory(LL)
1620 for (i, leaf) in enumerate(LL):
1621 # We MUST find a colon...
1622 if leaf.type == token.COLON:
1623 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1625 # That colon MUST be followed by a string...
1626 if is_valid_index(idx) and LL[idx].type == token.STRING:
1629 # Skip the string trailer, if one exists.
1630 string_parser = StringParser()
1631 idx = string_parser.parse(LL, string_idx)
1633 # That string MAY be followed by a comma...
1634 if is_valid_index(idx) and LL[idx].type == token.COMMA:
1637 # But no more leaves are allowed...
1638 if not is_valid_index(idx):
1643 def do_transform(self, line: Line, string_idx: int) -> Iterator[TResult[Line]]:
1646 is_valid_index = is_valid_index_factory(LL)
1647 insert_str_child = insert_str_child_factory(LL[string_idx])
1650 ends_with_comma = False
1651 if LL[comma_idx].type == token.COMMA:
1652 ends_with_comma = True
1654 leaves_to_steal_comments_from = [LL[string_idx]]
1656 leaves_to_steal_comments_from.append(LL[comma_idx])
1659 first_line = line.clone()
1660 left_leaves = LL[:string_idx]
1662 # We have to remember to account for (possibly invisible) LPAR and RPAR
1663 # leaves that already wrapped the target string. If these leaves do
1664 # exist, we will replace them with our own LPAR and RPAR leaves.
1665 old_parens_exist = False
1666 if left_leaves and left_leaves[-1].type == token.LPAR:
1667 old_parens_exist = True
1668 leaves_to_steal_comments_from.append(left_leaves[-1])
1671 append_leaves(first_line, line, left_leaves)
1673 lpar_leaf = Leaf(token.LPAR, "(")
1674 if old_parens_exist:
1675 replace_child(LL[string_idx - 1], lpar_leaf)
1677 insert_str_child(lpar_leaf)
1678 first_line.append(lpar_leaf)
1680 # We throw inline comments that were originally to the right of the
1681 # target string to the top line. They will now be shown to the right of
1683 for leaf in leaves_to_steal_comments_from:
1684 for comment_leaf in line.comments_after(leaf):
1685 first_line.append(comment_leaf, preformatted=True)
1687 yield Ok(first_line)
1689 # --- Middle (String) Line
1690 # We only need to yield one (possibly too long) string line, since the
1691 # `StringSplitter` will break it down further if necessary.
1692 string_value = LL[string_idx].value
1695 depth=line.depth + 1,
1696 inside_brackets=True,
1697 should_split_rhs=line.should_split_rhs,
1698 magic_trailing_comma=line.magic_trailing_comma,
1700 string_leaf = Leaf(token.STRING, string_value)
1701 insert_str_child(string_leaf)
1702 string_line.append(string_leaf)
1704 old_rpar_leaf = None
1705 if is_valid_index(string_idx + 1):
1706 right_leaves = LL[string_idx + 1 :]
1710 if old_parens_exist:
1711 assert right_leaves and right_leaves[-1].type == token.RPAR, (
1712 "Apparently, old parentheses do NOT exist?!"
1713 f" (left_leaves={left_leaves}, right_leaves={right_leaves})"
1715 old_rpar_leaf = right_leaves.pop()
1717 append_leaves(string_line, line, right_leaves)
1719 yield Ok(string_line)
1722 last_line = line.clone()
1723 last_line.bracket_tracker = first_line.bracket_tracker
1725 new_rpar_leaf = Leaf(token.RPAR, ")")
1726 if old_rpar_leaf is not None:
1727 replace_child(old_rpar_leaf, new_rpar_leaf)
1729 insert_str_child(new_rpar_leaf)
1730 last_line.append(new_rpar_leaf)
1732 # If the target string ended with a comma, we place this comma to the
1733 # right of the RPAR on the last line.
1735 comma_leaf = Leaf(token.COMMA, ",")
1736 replace_child(LL[comma_idx], comma_leaf)
1737 last_line.append(comma_leaf)
1744 A state machine that aids in parsing a string's "trailer", which can be
1745 either non-existent, an old-style formatting sequence (e.g. `% varX` or `%
1746 (varX, varY)`), or a method-call / attribute access (e.g. `.format(varX,
1749 NOTE: A new StringParser object MUST be instantiated for each string
1750 trailer we need to parse.
1753 We shall assume that `line` equals the `Line` object that corresponds
1754 to the following line of python code:
1756 x = "Some {}.".format("String") + some_other_string
1759 Furthermore, we will assume that `string_idx` is some index such that:
1761 assert line.leaves[string_idx].value == "Some {}."
1764 The following code snippet then holds:
1766 string_parser = StringParser()
1767 idx = string_parser.parse(line.leaves, string_idx)
1768 assert line.leaves[idx].type == token.PLUS
1774 # String Parser States
1784 # Lookup Table for Next State
1785 _goto: Dict[Tuple[ParserState, NodeType], ParserState] = {
1786 # A string trailer may start with '.' OR '%'.
1787 (START, token.DOT): DOT,
1788 (START, token.PERCENT): PERCENT,
1789 (START, DEFAULT_TOKEN): DONE,
1790 # A '.' MUST be followed by an attribute or method name.
1791 (DOT, token.NAME): NAME,
1792 # A method name MUST be followed by an '(', whereas an attribute name
1793 # is the last symbol in the string trailer.
1794 (NAME, token.LPAR): LPAR,
1795 (NAME, DEFAULT_TOKEN): DONE,
1796 # A '%' symbol can be followed by an '(' or a single argument (e.g. a
1797 # string or variable name).
1798 (PERCENT, token.LPAR): LPAR,
1799 (PERCENT, DEFAULT_TOKEN): SINGLE_FMT_ARG,
1800 # If a '%' symbol is followed by a single argument, that argument is
1801 # the last leaf in the string trailer.
1802 (SINGLE_FMT_ARG, DEFAULT_TOKEN): DONE,
1803 # If present, a ')' symbol is the last symbol in a string trailer.
1804 # (NOTE: LPARS and nested RPARS are not included in this lookup table,
1805 # since they are treated as a special case by the parsing logic in this
1806 # classes' implementation.)
1807 (RPAR, DEFAULT_TOKEN): DONE,
1810 def __init__(self) -> None:
1811 self._state = self.START
1812 self._unmatched_lpars = 0
1814 def parse(self, leaves: List[Leaf], string_idx: int) -> int:
1817 * @leaves[@string_idx].type == token.STRING
1820 The index directly after the last leaf which is apart of the string
1821 trailer, if a "trailer" exists.
1823 @string_idx + 1, if no string "trailer" exists.
1825 assert leaves[string_idx].type == token.STRING
1827 idx = string_idx + 1
1828 while idx < len(leaves) and self._next_state(leaves[idx]):
1832 def _next_state(self, leaf: Leaf) -> bool:
1835 * On the first call to this function, @leaf MUST be the leaf that
1836 was directly after the string leaf in question (e.g. if our target
1837 string is `line.leaves[i]` then the first call to this method must
1838 be `line.leaves[i + 1]`).
1839 * On the next call to this function, the leaf parameter passed in
1840 MUST be the leaf directly following @leaf.
1843 True iff @leaf is apart of the string's trailer.
1845 # We ignore empty LPAR or RPAR leaves.
1846 if is_empty_par(leaf):
1849 next_token = leaf.type
1850 if next_token == token.LPAR:
1851 self._unmatched_lpars += 1
1853 current_state = self._state
1855 # The LPAR parser state is a special case. We will return True until we
1856 # find the matching RPAR token.
1857 if current_state == self.LPAR:
1858 if next_token == token.RPAR:
1859 self._unmatched_lpars -= 1
1860 if self._unmatched_lpars == 0:
1861 self._state = self.RPAR
1862 # Otherwise, we use a lookup table to determine the next state.
1864 # If the lookup table matches the current state to the next
1865 # token, we use the lookup table.
1866 if (current_state, next_token) in self._goto:
1867 self._state = self._goto[current_state, next_token]
1869 # Otherwise, we check if a the current state was assigned a
1871 if (current_state, self.DEFAULT_TOKEN) in self._goto:
1872 self._state = self._goto[current_state, self.DEFAULT_TOKEN]
1873 # If no default has been assigned, then this parser has a logic
1876 raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
1878 if self._state == self.DONE:
1884 def insert_str_child_factory(string_leaf: Leaf) -> Callable[[LN], None]:
1886 Factory for a convenience function that is used to orphan @string_leaf
1887 and then insert multiple new leaves into the same part of the node
1888 structure that @string_leaf had originally occupied.
1891 Let `string_leaf = Leaf(token.STRING, '"foo"')` and `N =
1892 string_leaf.parent`. Assume the node `N` has the following
1899 Leaf(STRING, '"foo"'),
1903 We then run the code snippet shown below.
1905 insert_str_child = insert_str_child_factory(string_leaf)
1907 lpar = Leaf(token.LPAR, '(')
1908 insert_str_child(lpar)
1910 bar = Leaf(token.STRING, '"bar"')
1911 insert_str_child(bar)
1913 rpar = Leaf(token.RPAR, ')')
1914 insert_str_child(rpar)
1917 After which point, it follows that `string_leaf.parent is None` and
1918 the node `N` now has the following structure:
1925 Leaf(STRING, '"bar"'),
1930 string_parent = string_leaf.parent
1931 string_child_idx = string_leaf.remove()
1933 def insert_str_child(child: LN) -> None:
1934 nonlocal string_child_idx
1936 assert string_parent is not None
1937 assert string_child_idx is not None
1939 string_parent.insert_child(string_child_idx, child)
1940 string_child_idx += 1
1942 return insert_str_child
1945 def is_valid_index_factory(seq: Sequence[Any]) -> Callable[[int], bool]:
1951 is_valid_index = is_valid_index_factory(my_list)
1953 assert is_valid_index(0)
1954 assert is_valid_index(2)
1956 assert not is_valid_index(3)
1957 assert not is_valid_index(-1)
1961 def is_valid_index(idx: int) -> bool:
1964 True iff @idx is positive AND seq[@idx] does NOT raise an
1967 return 0 <= idx < len(seq)
1969 return is_valid_index