All patches and comments are welcome. Please squash your changes to logical
commits before using git-format-patch and git-send-email to
patches@git.madduck.net.
If you'd read over the Git project's submission guidelines and adhered to them,
I'd be especially grateful.
2 String transformers that can split and merge strings.
6 from abc import ABC, abstractmethod
7 from collections import defaultdict
8 from dataclasses import dataclass
26 if sys.version_info < (3, 8):
27 from typing_extensions import Final, Literal
29 from typing import Literal, Final
31 from mypy_extensions import trait
33 from black.comments import contains_pragma_comment
34 from black.lines import Line, append_leaves
35 from black.mode import Feature, Mode
36 from black.nodes import (
43 is_part_of_annotation,
48 from black.rusty import Err, Ok, Result
49 from black.strings import (
50 assert_is_leaf_string,
53 normalize_string_quotes,
55 from blib2to3.pgen2 import token
56 from blib2to3.pytree import Leaf, Node
59 class CannotTransform(Exception):
60 """Base class for errors raised by Transformers."""
65 LN = Union[Leaf, Node]
66 Transformer = Callable[[Line, Collection[Feature], Mode], Iterator[Line]]
71 TResult = Result[T, CannotTransform] # (T)ransform Result
72 TMatchResult = TResult[List[Index]]
75 def TErr(err_msg: str) -> Err[CannotTransform]:
78 Convenience function used when working with the TResult type.
80 cant_transform = CannotTransform(err_msg)
81 return Err(cant_transform)
85 line: Line, features: Collection[Feature], mode: Mode
87 """A transformer which normalizes spacing around power operators."""
89 # Performance optimization to avoid unnecessary Leaf clones and other ops.
90 for leaf in line.leaves:
91 if leaf.type == token.DOUBLESTAR:
94 raise CannotTransform("No doublestar token was found in the line.")
96 def is_simple_lookup(index: int, step: Literal[1, -1]) -> bool:
97 # Brackets and parentheses indicate calls, subscripts, etc. ...
98 # basically stuff that doesn't count as "simple". Only a NAME lookup
99 # or dotted lookup (eg. NAME.NAME) is OK.
101 disallowed = {token.RPAR, token.RSQB}
103 disallowed = {token.LPAR, token.LSQB}
105 while 0 <= index < len(line.leaves):
106 current = line.leaves[index]
107 if current.type in disallowed:
109 if current.type not in {token.NAME, token.DOT} or current.value == "for":
110 # If the current token isn't disallowed, we'll assume this is simple as
111 # only the disallowed tokens are semantically attached to this lookup
112 # expression we're checking. Also, stop early if we hit the 'for' bit
113 # of a comprehension.
120 def is_simple_operand(index: int, kind: Literal["base", "exponent"]) -> bool:
121 # An operand is considered "simple" if's a NAME, a numeric CONSTANT, a simple
122 # lookup (see above), with or without a preceding unary operator.
123 start = line.leaves[index]
124 if start.type in {token.NAME, token.NUMBER}:
125 return is_simple_lookup(index, step=(1 if kind == "exponent" else -1))
127 if start.type in {token.PLUS, token.MINUS, token.TILDE}:
128 if line.leaves[index + 1].type in {token.NAME, token.NUMBER}:
129 # step is always one as bases with a preceding unary op will be checked
130 # for simplicity starting from the next token (so it'll hit the check
132 return is_simple_lookup(index + 1, step=1)
136 new_line = line.clone()
138 for idx, leaf in enumerate(line.leaves):
139 new_leaf = leaf.clone()
145 (0 < idx < len(line.leaves) - 1)
146 and leaf.type == token.DOUBLESTAR
147 and is_simple_operand(idx - 1, kind="base")
148 and line.leaves[idx - 1].value != "lambda"
149 and is_simple_operand(idx + 1, kind="exponent")
154 # We have to be careful to make a new line properly:
155 # - bracket related metadata must be maintained (handled by Line.append)
156 # - comments need to copied over, updating the leaf IDs they're attached to
157 new_line.append(new_leaf, preformatted=True)
158 for comment_leaf in line.comments_after(leaf):
159 new_line.append(comment_leaf, preformatted=True)
164 class StringTransformer(ABC):
166 An implementation of the Transformer protocol that relies on its
167 subclasses overriding the template methods `do_match(...)` and
170 This Transformer works exclusively on strings (for example, by merging
173 The following sections can be found among the docstrings of each concrete
174 StringTransformer subclass.
177 Which requirements must be met of the given Line for this
178 StringTransformer to be applied?
181 If the given Line meets all of the above requirements, which string
182 transformations can you expect to be applied to it by this
186 What contractual agreements does this StringTransformer have with other
187 StringTransfomers? Such collaborations should be eliminated/minimized
191 __name__: Final = "StringTransformer"
193 # Ideally this would be a dataclass, but unfortunately mypyc breaks when used with
195 def __init__(self, line_length: int, normalize_strings: bool) -> None:
196 self.line_length = line_length
197 self.normalize_strings = normalize_strings
200 def do_match(self, line: Line) -> TMatchResult:
203 * Ok(string_indices) such that for each index, `line.leaves[index]`
204 is our target string if a match was able to be made. For
205 transformers that don't result in more lines (e.g. StringMerger,
206 StringParenStripper), multiple matches and transforms are done at
207 once to reduce the complexity.
209 * Err(CannotTransform), if no match could be made.
214 self, line: Line, string_indices: List[int]
215 ) -> Iterator[TResult[Line]]:
218 * Ok(new_line) where new_line is the new transformed line.
220 * Err(CannotTransform) if the transformation failed for some reason. The
221 `do_match(...)` template method should usually be used to reject
222 the form of the given Line, but in some cases it is difficult to
223 know whether or not a Line meets the StringTransformer's
224 requirements until the transformation is already midway.
227 This method should NOT mutate @line directly, but it MAY mutate the
228 Line's underlying Node structure. (WARNING: If the underlying Node
229 structure IS altered, then this method should NOT be allowed to
230 yield an CannotTransform after that point.)
234 self, line: Line, _features: Collection[Feature], _mode: Mode
237 StringTransformer instances have a call signature that mirrors that of
238 the Transformer type.
241 CannotTransform(...) if the concrete StringTransformer class is unable
244 # Optimization to avoid calling `self.do_match(...)` when the line does
245 # not contain any string.
246 if not any(leaf.type == token.STRING for leaf in line.leaves):
247 raise CannotTransform("There are no strings in this line.")
249 match_result = self.do_match(line)
251 if isinstance(match_result, Err):
252 cant_transform = match_result.err()
253 raise CannotTransform(
254 f"The string transformer {self.__class__.__name__} does not recognize"
255 " this line as one that it can transform."
256 ) from cant_transform
258 string_indices = match_result.ok()
260 for line_result in self.do_transform(line, string_indices):
261 if isinstance(line_result, Err):
262 cant_transform = line_result.err()
263 raise CannotTransform(
264 "StringTransformer failed while attempting to transform string."
265 ) from cant_transform
266 line = line_result.ok()
272 """A custom (i.e. manual) string split.
274 A single CustomSplit instance represents a single substring.
277 Consider the following string:
284 This string will correspond to the following three CustomSplit instances:
286 CustomSplit(False, 16)
287 CustomSplit(False, 17)
288 CustomSplit(True, 16)
297 class CustomSplitMapMixin:
299 This mixin class is used to map merged strings to a sequence of
300 CustomSplits, which will then be used to re-split the strings iff none of
301 the resultant substrings go over the configured max line length.
304 _Key: ClassVar = Tuple[StringID, str]
305 _CUSTOM_SPLIT_MAP: ClassVar[Dict[_Key, Tuple[CustomSplit, ...]]] = defaultdict(
310 def _get_key(string: str) -> "CustomSplitMapMixin._Key":
313 A unique identifier that is used internally to map @string to a
314 group of custom splits.
316 return (id(string), string)
318 def add_custom_splits(
319 self, string: str, custom_splits: Iterable[CustomSplit]
321 """Custom Split Map Setter Method
324 Adds a mapping from @string to the custom splits @custom_splits.
326 key = self._get_key(string)
327 self._CUSTOM_SPLIT_MAP[key] = tuple(custom_splits)
329 def pop_custom_splits(self, string: str) -> List[CustomSplit]:
330 """Custom Split Map Getter Method
333 * A list of the custom splits that are mapped to @string, if any
339 Deletes the mapping between @string and its associated custom
340 splits (which are returned to the caller).
342 key = self._get_key(string)
344 custom_splits = self._CUSTOM_SPLIT_MAP[key]
345 del self._CUSTOM_SPLIT_MAP[key]
347 return list(custom_splits)
349 def has_custom_splits(self, string: str) -> bool:
352 True iff @string is associated with a set of custom splits.
354 key = self._get_key(string)
355 return key in self._CUSTOM_SPLIT_MAP
358 class StringMerger(StringTransformer, CustomSplitMapMixin):
359 """StringTransformer that merges strings together.
362 (A) The line contains adjacent strings such that ALL of the validation checks
363 listed in StringMerger._validate_msg(...)'s docstring pass.
365 (B) The line contains a string which uses line continuation backslashes.
368 Depending on which of the two requirements above where met, either:
370 (A) The string group associated with the target string is merged.
372 (B) All line-continuation backslashes are removed from the target string.
375 StringMerger provides custom split information to StringSplitter.
378 def do_match(self, line: Line) -> TMatchResult:
381 is_valid_index = is_valid_index_factory(LL)
385 while is_valid_index(idx):
388 leaf.type == token.STRING
389 and is_valid_index(idx + 1)
390 and LL[idx + 1].type == token.STRING
392 if not is_part_of_annotation(leaf):
393 string_indices.append(idx)
395 # Advance to the next non-STRING leaf.
397 while is_valid_index(idx) and LL[idx].type == token.STRING:
400 elif leaf.type == token.STRING and "\\\n" in leaf.value:
401 string_indices.append(idx)
402 # Advance to the next non-STRING leaf.
404 while is_valid_index(idx) and LL[idx].type == token.STRING:
411 return Ok(string_indices)
413 return TErr("This line has no strings that need merging.")
416 self, line: Line, string_indices: List[int]
417 ) -> Iterator[TResult[Line]]:
420 rblc_result = self._remove_backslash_line_continuation_chars(
421 new_line, string_indices
423 if isinstance(rblc_result, Ok):
424 new_line = rblc_result.ok()
426 msg_result = self._merge_string_group(new_line, string_indices)
427 if isinstance(msg_result, Ok):
428 new_line = msg_result.ok()
430 if isinstance(rblc_result, Err) and isinstance(msg_result, Err):
431 msg_cant_transform = msg_result.err()
432 rblc_cant_transform = rblc_result.err()
433 cant_transform = CannotTransform(
434 "StringMerger failed to merge any strings in this line."
437 # Chain the errors together using `__cause__`.
438 msg_cant_transform.__cause__ = rblc_cant_transform
439 cant_transform.__cause__ = msg_cant_transform
441 yield Err(cant_transform)
446 def _remove_backslash_line_continuation_chars(
447 line: Line, string_indices: List[int]
450 Merge strings that were split across multiple lines using
451 line-continuation backslashes.
454 Ok(new_line), if @line contains backslash line-continuation
457 Err(CannotTransform), otherwise.
461 indices_to_transform = []
462 for string_idx in string_indices:
463 string_leaf = LL[string_idx]
465 string_leaf.type == token.STRING
466 and "\\\n" in string_leaf.value
467 and not has_triple_quotes(string_leaf.value)
469 indices_to_transform.append(string_idx)
471 if not indices_to_transform:
473 "Found no string leaves that contain backslash line continuation"
477 new_line = line.clone()
478 new_line.comments = line.comments.copy()
479 append_leaves(new_line, line, LL)
481 for string_idx in indices_to_transform:
482 new_string_leaf = new_line.leaves[string_idx]
483 new_string_leaf.value = new_string_leaf.value.replace("\\\n", "")
487 def _merge_string_group(
488 self, line: Line, string_indices: List[int]
491 Merges string groups (i.e. set of adjacent strings).
493 Each index from `string_indices` designates one string group's first
494 leaf in `line.leaves`.
497 Ok(new_line), if ALL of the validation checks found in
498 _validate_msg(...) pass.
500 Err(CannotTransform), otherwise.
504 is_valid_index = is_valid_index_factory(LL)
506 # A dict of {string_idx: tuple[num_of_strings, string_leaf]}.
507 merged_string_idx_dict: Dict[int, Tuple[int, Leaf]] = {}
508 for string_idx in string_indices:
509 vresult = self._validate_msg(line, string_idx)
510 if isinstance(vresult, Err):
512 merged_string_idx_dict[string_idx] = self._merge_one_string_group(
513 LL, string_idx, is_valid_index
516 if not merged_string_idx_dict:
517 return TErr("No string group is merged")
519 # Build the final line ('new_line') that this method will later return.
520 new_line = line.clone()
521 previous_merged_string_idx = -1
522 previous_merged_num_of_strings = -1
523 for i, leaf in enumerate(LL):
524 if i in merged_string_idx_dict:
525 previous_merged_string_idx = i
526 previous_merged_num_of_strings, string_leaf = merged_string_idx_dict[i]
527 new_line.append(string_leaf)
530 previous_merged_string_idx
532 < previous_merged_string_idx + previous_merged_num_of_strings
534 for comment_leaf in line.comments_after(LL[i]):
535 new_line.append(comment_leaf, preformatted=True)
538 append_leaves(new_line, line, [leaf])
542 def _merge_one_string_group(
543 self, LL: List[Leaf], string_idx: int, is_valid_index: Callable[[int], bool]
544 ) -> Tuple[int, Leaf]:
546 Merges one string group where the first string in the group is
550 A tuple of `(num_of_strings, leaf)` where `num_of_strings` is the
551 number of strings merged and `leaf` is the newly merged string
552 to be replaced in the new line.
554 # If the string group is wrapped inside an Atom node, we must make sure
555 # to later replace that Atom with our new (merged) string leaf.
556 atom_node = LL[string_idx].parent
558 # We will place BREAK_MARK in between every two substrings that we
559 # merge. We will then later go through our final result and use the
560 # various instances of BREAK_MARK we find to add the right values to
561 # the custom split map.
562 BREAK_MARK = "@@@@@ BLACK BREAKPOINT MARKER @@@@@"
564 QUOTE = LL[string_idx].value[-1]
566 def make_naked(string: str, string_prefix: str) -> str:
567 """Strip @string (i.e. make it a "naked" string)
570 * assert_is_leaf_string(@string)
573 A string that is identical to @string except that
574 @string_prefix has been stripped, the surrounding QUOTE
575 characters have been removed, and any remaining QUOTE
576 characters have been escaped.
578 assert_is_leaf_string(string)
579 if "f" in string_prefix:
580 string = _toggle_fexpr_quotes(string, QUOTE)
581 # After quotes toggling, quotes in expressions won't be escaped
582 # because quotes can't be reused in f-strings. So we can simply
583 # let the escaping logic below run without knowing f-string
586 RE_EVEN_BACKSLASHES = r"(?:(?<!\\)(?:\\\\)*)"
587 naked_string = string[len(string_prefix) + 1 : -1]
588 naked_string = re.sub(
589 "(" + RE_EVEN_BACKSLASHES + ")" + QUOTE, r"\1\\" + QUOTE, naked_string
593 # Holds the CustomSplit objects that will later be added to the custom
597 # Temporary storage for the 'has_prefix' part of the CustomSplit objects.
600 # Sets the 'prefix' variable. This is the prefix that the final merged
602 next_str_idx = string_idx
606 and is_valid_index(next_str_idx)
607 and LL[next_str_idx].type == token.STRING
609 prefix = get_string_prefix(LL[next_str_idx].value).lower()
612 # The next loop merges the string group. The final string will be
615 # The following convenience variables are used:
620 # NSS: naked next string
624 next_str_idx = string_idx
625 while is_valid_index(next_str_idx) and LL[next_str_idx].type == token.STRING:
628 SS = LL[next_str_idx].value
629 next_prefix = get_string_prefix(SS).lower()
631 # If this is an f-string group but this substring is not prefixed
633 if "f" in prefix and "f" not in next_prefix:
634 # Then we must escape any braces contained in this substring.
635 SS = re.sub(r"(\{|\})", r"\1\1", SS)
637 NSS = make_naked(SS, next_prefix)
639 has_prefix = bool(next_prefix)
640 prefix_tracker.append(has_prefix)
642 S = prefix + QUOTE + NS + NSS + BREAK_MARK + QUOTE
643 NS = make_naked(S, prefix)
647 # Take a note on the index of the non-STRING leaf.
648 non_string_idx = next_str_idx
650 S_leaf = Leaf(token.STRING, S)
651 if self.normalize_strings:
652 S_leaf.value = normalize_string_quotes(S_leaf.value)
654 # Fill the 'custom_splits' list with the appropriate CustomSplit objects.
655 temp_string = S_leaf.value[len(prefix) + 1 : -1]
656 for has_prefix in prefix_tracker:
657 mark_idx = temp_string.find(BREAK_MARK)
660 ), "Logic error while filling the custom string breakpoint cache."
662 temp_string = temp_string[mark_idx + len(BREAK_MARK) :]
663 breakpoint_idx = mark_idx + (len(prefix) if has_prefix else 0) + 1
664 custom_splits.append(CustomSplit(has_prefix, breakpoint_idx))
666 string_leaf = Leaf(token.STRING, S_leaf.value.replace(BREAK_MARK, ""))
668 if atom_node is not None:
669 # If not all children of the atom node are merged (this can happen
670 # when there is a standalone comment in the middle) ...
671 if non_string_idx - string_idx < len(atom_node.children):
672 # We need to replace the old STRING leaves with the new string leaf.
673 first_child_idx = LL[string_idx].remove()
674 for idx in range(string_idx + 1, non_string_idx):
676 if first_child_idx is not None:
677 atom_node.insert_child(first_child_idx, string_leaf)
679 # Else replace the atom node with the new string leaf.
680 replace_child(atom_node, string_leaf)
682 self.add_custom_splits(string_leaf.value, custom_splits)
683 return num_of_strings, string_leaf
686 def _validate_msg(line: Line, string_idx: int) -> TResult[None]:
687 """Validate (M)erge (S)tring (G)roup
689 Transform-time string validation logic for _merge_string_group(...).
692 * Ok(None), if ALL validation checks (listed below) pass.
694 * Err(CannotTransform), if any of the following are true:
695 - The target string group does not contain ANY stand-alone comments.
696 - The target string is not in a string group (i.e. it has no
698 - The string group has more than one inline comment.
699 - The string group has an inline comment that appears to be a pragma.
700 - The set of all string prefixes in the string group is of
701 length greater than one and is not equal to {"", "f"}.
702 - The string group consists of raw strings.
703 - The string group is stringified type annotations. We don't want to
704 process stringified type annotations since pyright doesn't support
705 them spanning multiple string values. (NOTE: mypy, pytype, pyre do
706 support them, so we can change if pyright also gains support in the
707 future. See https://github.com/microsoft/pyright/issues/4359.)
709 # We first check for "inner" stand-alone comments (i.e. stand-alone
710 # comments that have a string leaf before them AND after them).
713 found_sa_comment = False
714 is_valid_index = is_valid_index_factory(line.leaves)
715 while is_valid_index(i) and line.leaves[i].type in [
719 if line.leaves[i].type == STANDALONE_COMMENT:
720 found_sa_comment = True
721 elif found_sa_comment:
723 "StringMerger does NOT merge string groups which contain "
724 "stand-alone comments."
729 num_of_inline_string_comments = 0
730 set_of_prefixes = set()
732 for leaf in line.leaves[string_idx:]:
733 if leaf.type != token.STRING:
734 # If the string group is trailed by a comma, we count the
735 # comments trailing the comma to be one of the string group's
737 if leaf.type == token.COMMA and id(leaf) in line.comments:
738 num_of_inline_string_comments += 1
741 if has_triple_quotes(leaf.value):
742 return TErr("StringMerger does NOT merge multiline strings.")
745 prefix = get_string_prefix(leaf.value).lower()
747 return TErr("StringMerger does NOT merge raw strings.")
749 set_of_prefixes.add(prefix)
751 if id(leaf) in line.comments:
752 num_of_inline_string_comments += 1
753 if contains_pragma_comment(line.comments[id(leaf)]):
754 return TErr("Cannot merge strings which have pragma comments.")
756 if num_of_strings < 2:
758 f"Not enough strings to merge (num_of_strings={num_of_strings})."
761 if num_of_inline_string_comments > 1:
763 f"Too many inline string comments ({num_of_inline_string_comments})."
766 if len(set_of_prefixes) > 1 and set_of_prefixes != {"", "f"}:
767 return TErr(f"Too many different prefixes ({set_of_prefixes}).")
772 class StringParenStripper(StringTransformer):
773 """StringTransformer that strips surrounding parentheses from strings.
776 The line contains a string which is surrounded by parentheses and:
777 - The target string is NOT the only argument to a function call.
778 - The target string is NOT a "pointless" string.
779 - If the target string contains a PERCENT, the brackets are not
780 preceded or followed by an operator with higher precedence than
784 The parentheses mentioned in the 'Requirements' section are stripped.
787 StringParenStripper has its own inherent usefulness, but it is also
788 relied on to clean up the parentheses created by StringParenWrapper (in
789 the event that they are no longer needed).
792 def do_match(self, line: Line) -> TMatchResult:
795 is_valid_index = is_valid_index_factory(LL)
806 # Should be a string...
807 if leaf.type != token.STRING:
810 # If this is a "pointless" string...
813 and leaf.parent.parent
814 and leaf.parent.parent.type == syms.simple_stmt
818 # Should be preceded by a non-empty LPAR...
820 not is_valid_index(idx - 1)
821 or LL[idx - 1].type != token.LPAR
822 or is_empty_lpar(LL[idx - 1])
826 # That LPAR should NOT be preceded by a function name or a closing
827 # bracket (which could be a function which returns a function or a
828 # list/dictionary that contains a function)...
829 if is_valid_index(idx - 2) and (
830 LL[idx - 2].type == token.NAME or LL[idx - 2].type in CLOSING_BRACKETS
836 # Skip the string trailer, if one exists.
837 string_parser = StringParser()
838 next_idx = string_parser.parse(LL, string_idx)
840 # if the leaves in the parsed string include a PERCENT, we need to
841 # make sure the initial LPAR is NOT preceded by an operator with
842 # higher or equal precedence to PERCENT
843 if is_valid_index(idx - 2):
844 # mypy can't quite follow unless we name this
845 before_lpar = LL[idx - 2]
846 if token.PERCENT in {leaf.type for leaf in LL[idx - 1 : next_idx]} and (
863 # only unary PLUS/MINUS
865 and before_lpar.parent.type == syms.factor
866 and (before_lpar.type in {token.PLUS, token.MINUS})
871 # Should be followed by a non-empty RPAR...
873 is_valid_index(next_idx)
874 and LL[next_idx].type == token.RPAR
875 and not is_empty_rpar(LL[next_idx])
877 # That RPAR should NOT be followed by anything with higher
878 # precedence than PERCENT
879 if is_valid_index(next_idx + 1) and LL[next_idx + 1].type in {
887 string_indices.append(string_idx)
889 while idx < len(LL) - 1 and LL[idx + 1].type == token.STRING:
893 return Ok(string_indices)
894 return TErr("This line has no strings wrapped in parens.")
897 self, line: Line, string_indices: List[int]
898 ) -> Iterator[TResult[Line]]:
901 string_and_rpar_indices: List[int] = []
902 for string_idx in string_indices:
903 string_parser = StringParser()
904 rpar_idx = string_parser.parse(LL, string_idx)
906 should_transform = True
907 for leaf in (LL[string_idx - 1], LL[rpar_idx]):
908 if line.comments_after(leaf):
909 # Should not strip parentheses which have comments attached
911 should_transform = False
914 string_and_rpar_indices.extend((string_idx, rpar_idx))
916 if string_and_rpar_indices:
917 yield Ok(self._transform_to_new_line(line, string_and_rpar_indices))
920 CannotTransform("All string groups have comments attached to them.")
923 def _transform_to_new_line(
924 self, line: Line, string_and_rpar_indices: List[int]
928 new_line = line.clone()
929 new_line.comments = line.comments.copy()
932 # We need to sort the indices, since string_idx and its matching
933 # rpar_idx may not come in order, e.g. in
934 # `("outer" % ("inner".join(items)))`, the "inner" string's
935 # string_idx is smaller than "outer" string's rpar_idx.
936 for idx in sorted(string_and_rpar_indices):
938 lpar_or_rpar_idx = idx - 1 if leaf.type == token.STRING else idx
939 append_leaves(new_line, line, LL[previous_idx + 1 : lpar_or_rpar_idx])
940 if leaf.type == token.STRING:
941 string_leaf = Leaf(token.STRING, LL[idx].value)
942 LL[lpar_or_rpar_idx].remove() # Remove lpar.
943 replace_child(LL[idx], string_leaf)
944 new_line.append(string_leaf)
946 LL[lpar_or_rpar_idx].remove() # This is a rpar.
950 # Append the leaves after the last idx:
951 append_leaves(new_line, line, LL[idx + 1 :])
956 class BaseStringSplitter(StringTransformer):
958 Abstract class for StringTransformers which transform a Line's strings by splitting
959 them or placing them on their own lines where necessary to avoid going over
960 the configured line length.
963 * The target string value is responsible for the line going over the
964 line length limit. It follows that after all of black's other line
965 split methods have been exhausted, this line (or one of the resulting
966 lines after all line splits are performed) would still be over the
967 line_length limit unless we split this string.
969 * The target string is NOT a "pointless" string (i.e. a string that has
970 no parent or siblings).
972 * The target string is not followed by an inline comment that appears
975 * The target string is not a multiline (i.e. triple-quote) string.
978 STRING_OPERATORS: Final = [
991 def do_splitter_match(self, line: Line) -> TMatchResult:
993 BaseStringSplitter asks its clients to override this method instead of
994 `StringTransformer.do_match(...)`.
996 Follows the same protocol as `StringTransformer.do_match(...)`.
998 Refer to `help(StringTransformer.do_match)` for more information.
1001 def do_match(self, line: Line) -> TMatchResult:
1002 match_result = self.do_splitter_match(line)
1003 if isinstance(match_result, Err):
1006 string_indices = match_result.ok()
1007 assert len(string_indices) == 1, (
1008 f"{self.__class__.__name__} should only find one match at a time, found"
1009 f" {len(string_indices)}"
1011 string_idx = string_indices[0]
1012 vresult = self._validate(line, string_idx)
1013 if isinstance(vresult, Err):
1018 def _validate(self, line: Line, string_idx: int) -> TResult[None]:
1020 Checks that @line meets all of the requirements listed in this classes'
1021 docstring. Refer to `help(BaseStringSplitter)` for a detailed
1022 description of those requirements.
1025 * Ok(None), if ALL of the requirements are met.
1027 * Err(CannotTransform), if ANY of the requirements are NOT met.
1031 string_leaf = LL[string_idx]
1033 max_string_length = self._get_max_string_length(line, string_idx)
1034 if len(string_leaf.value) <= max_string_length:
1036 "The string itself is not what is causing this line to be too long."
1039 if not string_leaf.parent or [L.type for L in string_leaf.parent.children] == [
1044 f"This string ({string_leaf.value}) appears to be pointless (i.e. has"
1048 if id(line.leaves[string_idx]) in line.comments and contains_pragma_comment(
1049 line.comments[id(line.leaves[string_idx])]
1052 "Line appears to end with an inline pragma comment. Splitting the line"
1053 " could modify the pragma's behavior."
1056 if has_triple_quotes(string_leaf.value):
1057 return TErr("We cannot split multiline strings.")
1061 def _get_max_string_length(self, line: Line, string_idx: int) -> int:
1063 Calculates the max string length used when attempting to determine
1064 whether or not the target string is responsible for causing the line to
1065 go over the line length limit.
1067 WARNING: This method is tightly coupled to both StringSplitter and
1068 (especially) StringParenWrapper. There is probably a better way to
1069 accomplish what is being done here.
1072 max_string_length: such that `line.leaves[string_idx].value >
1073 max_string_length` implies that the target string IS responsible
1074 for causing this line to exceed the line length limit.
1078 is_valid_index = is_valid_index_factory(LL)
1080 # We use the shorthand "WMA4" in comments to abbreviate "We must
1081 # account for". When giving examples, we use STRING to mean some/any
1084 # Finally, we use the following convenience variables:
1086 # P: The leaf that is before the target string leaf.
1087 # N: The leaf that is after the target string leaf.
1088 # NN: The leaf that is after N.
1090 # WMA4 the whitespace at the beginning of the line.
1091 offset = line.depth * 4
1093 if is_valid_index(string_idx - 1):
1094 p_idx = string_idx - 1
1096 LL[string_idx - 1].type == token.LPAR
1097 and LL[string_idx - 1].value == ""
1100 # If the previous leaf is an empty LPAR placeholder, we should skip it.
1104 if P.type in self.STRING_OPERATORS:
1105 # WMA4 a space and a string operator (e.g. `+ STRING` or `== STRING`).
1106 offset += len(str(P)) + 1
1108 if P.type == token.COMMA:
1109 # WMA4 a space, a comma, and a closing bracket [e.g. `), STRING`].
1112 if P.type in [token.COLON, token.EQUAL, token.PLUSEQUAL, token.NAME]:
1113 # This conditional branch is meant to handle dictionary keys,
1114 # variable assignments, 'return STRING' statement lines, and
1115 # 'else STRING' ternary expression lines.
1117 # WMA4 a single space.
1120 # WMA4 the lengths of any leaves that came before that space,
1121 # but after any closing bracket before that space.
1122 for leaf in reversed(LL[: p_idx + 1]):
1123 offset += len(str(leaf))
1124 if leaf.type in CLOSING_BRACKETS:
1127 if is_valid_index(string_idx + 1):
1128 N = LL[string_idx + 1]
1129 if N.type == token.RPAR and N.value == "" and len(LL) > string_idx + 2:
1130 # If the next leaf is an empty RPAR placeholder, we should skip it.
1131 N = LL[string_idx + 2]
1133 if N.type == token.COMMA:
1134 # WMA4 a single comma at the end of the string (e.g `STRING,`).
1137 if is_valid_index(string_idx + 2):
1138 NN = LL[string_idx + 2]
1140 if N.type == token.DOT and NN.type == token.NAME:
1141 # This conditional branch is meant to handle method calls invoked
1142 # off of a string literal up to and including the LPAR character.
1144 # WMA4 the '.' character.
1148 is_valid_index(string_idx + 3)
1149 and LL[string_idx + 3].type == token.LPAR
1151 # WMA4 the left parenthesis character.
1154 # WMA4 the length of the method's name.
1155 offset += len(NN.value)
1157 has_comments = False
1158 for comment_leaf in line.comments_after(LL[string_idx]):
1159 if not has_comments:
1161 # WMA4 two spaces before the '#' character.
1164 # WMA4 the length of the inline comment.
1165 offset += len(comment_leaf.value)
1167 max_string_length = self.line_length - offset
1168 return max_string_length
1171 def _prefer_paren_wrap_match(LL: List[Leaf]) -> Optional[int]:
1174 string_idx such that @LL[string_idx] is equal to our target (i.e.
1175 matched) string, if this line matches the "prefer paren wrap" statement
1176 requirements listed in the 'Requirements' section of the StringParenWrapper
1181 # The line must start with a string.
1182 if LL[0].type != token.STRING:
1185 # If the string is surrounded by commas (or is the first/last child)...
1186 prev_sibling = LL[0].prev_sibling
1187 next_sibling = LL[0].next_sibling
1188 if not prev_sibling and not next_sibling and parent_type(LL[0]) == syms.atom:
1189 # If it's an atom string, we need to check the parent atom's siblings.
1190 parent = LL[0].parent
1191 assert parent is not None # For type checkers.
1192 prev_sibling = parent.prev_sibling
1193 next_sibling = parent.next_sibling
1194 if (not prev_sibling or prev_sibling.type == token.COMMA) and (
1195 not next_sibling or next_sibling.type == token.COMMA
1202 def iter_fexpr_spans(s: str) -> Iterator[Tuple[int, int]]:
1204 Yields spans corresponding to expressions in a given f-string.
1205 Spans are half-open ranges (left inclusive, right exclusive).
1206 Assumes the input string is a valid f-string, but will not crash if the input
1209 stack: List[int] = [] # our curly paren stack
1213 # if we're in a string part of the f-string, ignore escaped curly braces
1214 if not stack and i + 1 < len(s) and s[i + 1] == "{":
1226 # we've made it back out of the expression! yield the span
1232 # if we're in an expression part of the f-string, fast forward through strings
1233 # note that backslashes are not legal in the expression portion of f-strings
1236 if s[i : i + 3] in ("'''", '"""'):
1237 delim = s[i : i + 3]
1238 elif s[i] in ("'", '"'):
1242 while i < len(s) and s[i : i + len(delim)] != delim:
1249 def fstring_contains_expr(s: str) -> bool:
1250 return any(iter_fexpr_spans(s))
1253 def _toggle_fexpr_quotes(fstring: str, old_quote: str) -> str:
1255 Toggles quotes used in f-string expressions that are `old_quote`.
1257 f-string expressions can't contain backslashes, so we need to toggle the
1258 quotes if the f-string itself will end up using the same quote. We can
1259 simply toggle without escaping because, quotes can't be reused in f-string
1260 expressions. They will fail to parse.
1262 NOTE: If PEP 701 is accepted, above statement will no longer be true.
1263 Though if quotes can be reused, we can simply reuse them without updates or
1264 escaping, once Black figures out how to parse the new grammar.
1266 new_quote = "'" if old_quote == '"' else '"'
1269 for start, end in iter_fexpr_spans(fstring):
1270 parts.append(fstring[previous_index:start])
1271 parts.append(fstring[start:end].replace(old_quote, new_quote))
1272 previous_index = end
1273 parts.append(fstring[previous_index:])
1274 return "".join(parts)
1277 class StringSplitter(BaseStringSplitter, CustomSplitMapMixin):
1279 StringTransformer that splits "atom" strings (i.e. strings which exist on
1280 lines by themselves).
1283 * The line consists ONLY of a single string (possibly prefixed by a
1284 string operator [e.g. '+' or '==']), MAYBE a string trailer, and MAYBE
1287 * All of the requirements listed in BaseStringSplitter's docstring.
1290 The string mentioned in the 'Requirements' section is split into as
1291 many substrings as necessary to adhere to the configured line length.
1293 In the final set of substrings, no substring should be smaller than
1294 MIN_SUBSTR_SIZE characters.
1296 The string will ONLY be split on spaces (i.e. each new substring should
1297 start with a space). Note that the string will NOT be split on a space
1298 which is escaped with a backslash.
1300 If the string is an f-string, it will NOT be split in the middle of an
1301 f-expression (e.g. in f"FooBar: {foo() if x else bar()}", {foo() if x
1302 else bar()} is an f-expression).
1304 If the string that is being split has an associated set of custom split
1305 records and those custom splits will NOT result in any line going over
1306 the configured line length, those custom splits are used. Otherwise the
1307 string is split as late as possible (from left-to-right) while still
1308 adhering to the transformation rules listed above.
1311 StringSplitter relies on StringMerger to construct the appropriate
1312 CustomSplit objects and add them to the custom split map.
1315 MIN_SUBSTR_SIZE: Final = 6
1317 def do_splitter_match(self, line: Line) -> TMatchResult:
1320 if self._prefer_paren_wrap_match(LL) is not None:
1321 return TErr("Line needs to be wrapped in parens first.")
1323 is_valid_index = is_valid_index_factory(LL)
1327 # The first two leaves MAY be the 'not in' keywords...
1330 and is_valid_index(idx + 1)
1331 and [LL[idx].type, LL[idx + 1].type] == [token.NAME, token.NAME]
1332 and str(LL[idx]) + str(LL[idx + 1]) == "not in"
1335 # Else the first leaf MAY be a string operator symbol or the 'in' keyword...
1336 elif is_valid_index(idx) and (
1337 LL[idx].type in self.STRING_OPERATORS
1338 or LL[idx].type == token.NAME
1339 and str(LL[idx]) == "in"
1343 # The next/first leaf MAY be an empty LPAR...
1344 if is_valid_index(idx) and is_empty_lpar(LL[idx]):
1347 # The next/first leaf MUST be a string...
1348 if not is_valid_index(idx) or LL[idx].type != token.STRING:
1349 return TErr("Line does not start with a string.")
1353 # Skip the string trailer, if one exists.
1354 string_parser = StringParser()
1355 idx = string_parser.parse(LL, string_idx)
1357 # That string MAY be followed by an empty RPAR...
1358 if is_valid_index(idx) and is_empty_rpar(LL[idx]):
1361 # That string / empty RPAR leaf MAY be followed by a comma...
1362 if is_valid_index(idx) and LL[idx].type == token.COMMA:
1365 # But no more leaves are allowed...
1366 if is_valid_index(idx):
1367 return TErr("This line does not end with a string.")
1369 return Ok([string_idx])
1372 self, line: Line, string_indices: List[int]
1373 ) -> Iterator[TResult[Line]]:
1375 assert len(string_indices) == 1, (
1376 f"{self.__class__.__name__} should only find one match at a time, found"
1377 f" {len(string_indices)}"
1379 string_idx = string_indices[0]
1381 QUOTE = LL[string_idx].value[-1]
1383 is_valid_index = is_valid_index_factory(LL)
1384 insert_str_child = insert_str_child_factory(LL[string_idx])
1386 prefix = get_string_prefix(LL[string_idx].value).lower()
1388 # We MAY choose to drop the 'f' prefix from substrings that don't
1389 # contain any f-expressions, but ONLY if the original f-string
1390 # contains at least one f-expression. Otherwise, we will alter the AST
1392 drop_pointless_f_prefix = ("f" in prefix) and fstring_contains_expr(
1393 LL[string_idx].value
1396 first_string_line = True
1398 string_op_leaves = self._get_string_operator_leaves(LL)
1399 string_op_leaves_length = (
1400 sum(len(str(prefix_leaf)) for prefix_leaf in string_op_leaves) + 1
1405 def maybe_append_string_operators(new_line: Line) -> None:
1408 If @line starts with a string operator and this is the first
1409 line we are constructing, this function appends the string
1410 operator to @new_line and replaces the old string operator leaf
1411 in the node structure. Otherwise this function does nothing.
1413 maybe_prefix_leaves = string_op_leaves if first_string_line else []
1414 for i, prefix_leaf in enumerate(maybe_prefix_leaves):
1415 replace_child(LL[i], prefix_leaf)
1416 new_line.append(prefix_leaf)
1419 is_valid_index(string_idx + 1) and LL[string_idx + 1].type == token.COMMA
1422 def max_last_string() -> int:
1425 The max allowed length of the string value used for the last
1426 line we will construct.
1428 result = self.line_length
1429 result -= line.depth * 4
1430 result -= 1 if ends_with_comma else 0
1431 result -= string_op_leaves_length
1434 # --- Calculate Max Break Index (for string value)
1435 # We start with the line length limit
1436 max_break_idx = self.line_length
1437 # The last index of a string of length N is N-1.
1439 # Leading whitespace is not present in the string value (e.g. Leaf.value).
1440 max_break_idx -= line.depth * 4
1441 if max_break_idx < 0:
1443 f"Unable to split {LL[string_idx].value} at such high of a line depth:"
1448 # Check if StringMerger registered any custom splits.
1449 custom_splits = self.pop_custom_splits(LL[string_idx].value)
1450 # We use them ONLY if none of them would produce lines that exceed the
1452 use_custom_breakpoints = bool(
1454 and all(csplit.break_idx <= max_break_idx for csplit in custom_splits)
1457 # Temporary storage for the remaining chunk of the string line that
1458 # can't fit onto the line currently being constructed.
1459 rest_value = LL[string_idx].value
1461 def more_splits_should_be_made() -> bool:
1464 True iff `rest_value` (the remaining string value from the last
1465 split), should be split again.
1467 if use_custom_breakpoints:
1468 return len(custom_splits) > 1
1470 return len(rest_value) > max_last_string()
1472 string_line_results: List[Ok[Line]] = []
1473 while more_splits_should_be_made():
1474 if use_custom_breakpoints:
1475 # Custom User Split (manual)
1476 csplit = custom_splits.pop(0)
1477 break_idx = csplit.break_idx
1479 # Algorithmic Split (automatic)
1480 max_bidx = max_break_idx - string_op_leaves_length
1481 maybe_break_idx = self._get_break_idx(rest_value, max_bidx)
1482 if maybe_break_idx is None:
1483 # If we are unable to algorithmically determine a good split
1484 # and this string has custom splits registered to it, we
1485 # fall back to using them--which means we have to start
1486 # over from the beginning.
1488 rest_value = LL[string_idx].value
1489 string_line_results = []
1490 first_string_line = True
1491 use_custom_breakpoints = True
1494 # Otherwise, we stop splitting here.
1497 break_idx = maybe_break_idx
1499 # --- Construct `next_value`
1500 next_value = rest_value[:break_idx] + QUOTE
1502 # HACK: The following 'if' statement is a hack to fix the custom
1503 # breakpoint index in the case of either: (a) substrings that were
1504 # f-strings but will have the 'f' prefix removed OR (b) substrings
1505 # that were not f-strings but will now become f-strings because of
1506 # redundant use of the 'f' prefix (i.e. none of the substrings
1507 # contain f-expressions but one or more of them had the 'f' prefix
1508 # anyway; in which case, we will prepend 'f' to _all_ substrings).
1510 # There is probably a better way to accomplish what is being done
1513 # If this substring is an f-string, we _could_ remove the 'f'
1514 # prefix, and the current custom split did NOT originally use a
1517 use_custom_breakpoints
1518 and not csplit.has_prefix
1520 # `next_value == prefix + QUOTE` happens when the custom
1521 # split is an empty string.
1522 next_value == prefix + QUOTE
1523 or next_value != self._normalize_f_string(next_value, prefix)
1526 # Then `csplit.break_idx` will be off by one after removing
1529 next_value = rest_value[:break_idx] + QUOTE
1531 if drop_pointless_f_prefix:
1532 next_value = self._normalize_f_string(next_value, prefix)
1534 # --- Construct `next_leaf`
1535 next_leaf = Leaf(token.STRING, next_value)
1536 insert_str_child(next_leaf)
1537 self._maybe_normalize_string_quotes(next_leaf)
1539 # --- Construct `next_line`
1540 next_line = line.clone()
1541 maybe_append_string_operators(next_line)
1542 next_line.append(next_leaf)
1543 string_line_results.append(Ok(next_line))
1545 rest_value = prefix + QUOTE + rest_value[break_idx:]
1546 first_string_line = False
1548 yield from string_line_results
1550 if drop_pointless_f_prefix:
1551 rest_value = self._normalize_f_string(rest_value, prefix)
1553 rest_leaf = Leaf(token.STRING, rest_value)
1554 insert_str_child(rest_leaf)
1556 # NOTE: I could not find a test case that verifies that the following
1557 # line is actually necessary, but it seems to be. Otherwise we risk
1558 # not normalizing the last substring, right?
1559 self._maybe_normalize_string_quotes(rest_leaf)
1561 last_line = line.clone()
1562 maybe_append_string_operators(last_line)
1564 # If there are any leaves to the right of the target string...
1565 if is_valid_index(string_idx + 1):
1566 # We use `temp_value` here to determine how long the last line
1567 # would be if we were to append all the leaves to the right of the
1568 # target string to the last string line.
1569 temp_value = rest_value
1570 for leaf in LL[string_idx + 1 :]:
1571 temp_value += str(leaf)
1572 if leaf.type == token.LPAR:
1575 # Try to fit them all on the same line with the last substring...
1577 len(temp_value) <= max_last_string()
1578 or LL[string_idx + 1].type == token.COMMA
1580 last_line.append(rest_leaf)
1581 append_leaves(last_line, line, LL[string_idx + 1 :])
1583 # Otherwise, place the last substring on one line and everything
1584 # else on a line below that...
1586 last_line.append(rest_leaf)
1589 non_string_line = line.clone()
1590 append_leaves(non_string_line, line, LL[string_idx + 1 :])
1591 yield Ok(non_string_line)
1592 # Else the target string was the last leaf...
1594 last_line.append(rest_leaf)
1595 last_line.comments = line.comments.copy()
1598 def _iter_nameescape_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
1601 All ranges of @string which, if @string were to be split there,
1602 would result in the splitting of an \\N{...} expression (which is NOT
1605 # True - the previous backslash was unescaped
1606 # False - the previous backslash was escaped *or* there was no backslash
1607 previous_was_unescaped_backslash = False
1608 it = iter(enumerate(string))
1611 previous_was_unescaped_backslash = not previous_was_unescaped_backslash
1613 if not previous_was_unescaped_backslash or c != "N":
1614 previous_was_unescaped_backslash = False
1616 previous_was_unescaped_backslash = False
1618 begin = idx - 1 # the position of backslash before \N{...}
1624 # malformed nameescape expression?
1625 # should have been detected by AST parsing earlier...
1626 raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
1629 def _iter_fexpr_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
1632 All ranges of @string which, if @string were to be split there,
1633 would result in the splitting of an f-expression (which is NOT
1636 if "f" not in get_string_prefix(string).lower():
1638 yield from iter_fexpr_spans(string)
1640 def _get_illegal_split_indices(self, string: str) -> Set[Index]:
1641 illegal_indices: Set[Index] = set()
1643 self._iter_fexpr_slices(string),
1644 self._iter_nameescape_slices(string),
1646 for it in iterators:
1647 for begin, end in it:
1648 illegal_indices.update(range(begin, end + 1))
1649 return illegal_indices
1651 def _get_break_idx(self, string: str, max_break_idx: int) -> Optional[int]:
1653 This method contains the algorithm that StringSplitter uses to
1654 determine which character to split each string at.
1657 @string: The substring that we are attempting to split.
1658 @max_break_idx: The ideal break index. We will return this value if it
1659 meets all the necessary conditions. In the likely event that it
1660 doesn't we will try to find the closest index BELOW @max_break_idx
1661 that does. If that fails, we will expand our search by also
1662 considering all valid indices ABOVE @max_break_idx.
1665 * assert_is_leaf_string(@string)
1666 * 0 <= @max_break_idx < len(@string)
1669 break_idx, if an index is able to be found that meets all of the
1670 conditions listed in the 'Transformations' section of this classes'
1675 is_valid_index = is_valid_index_factory(string)
1677 assert is_valid_index(max_break_idx)
1678 assert_is_leaf_string(string)
1680 _illegal_split_indices = self._get_illegal_split_indices(string)
1682 def breaks_unsplittable_expression(i: Index) -> bool:
1685 True iff returning @i would result in the splitting of an
1686 unsplittable expression (which is NOT allowed).
1688 return i in _illegal_split_indices
1690 def passes_all_checks(i: Index) -> bool:
1693 True iff ALL of the conditions listed in the 'Transformations'
1694 section of this classes' docstring would be be met by returning @i.
1696 is_space = string[i] == " "
1698 is_not_escaped = True
1700 while is_valid_index(j) and string[j] == "\\":
1701 is_not_escaped = not is_not_escaped
1705 len(string[i:]) >= self.MIN_SUBSTR_SIZE
1706 and len(string[:i]) >= self.MIN_SUBSTR_SIZE
1712 and not breaks_unsplittable_expression(i)
1715 # First, we check all indices BELOW @max_break_idx.
1716 break_idx = max_break_idx
1717 while is_valid_index(break_idx - 1) and not passes_all_checks(break_idx):
1720 if not passes_all_checks(break_idx):
1721 # If that fails, we check all indices ABOVE @max_break_idx.
1723 # If we are able to find a valid index here, the next line is going
1724 # to be longer than the specified line length, but it's probably
1725 # better than doing nothing at all.
1726 break_idx = max_break_idx + 1
1727 while is_valid_index(break_idx + 1) and not passes_all_checks(break_idx):
1730 if not is_valid_index(break_idx) or not passes_all_checks(break_idx):
1735 def _maybe_normalize_string_quotes(self, leaf: Leaf) -> None:
1736 if self.normalize_strings:
1737 leaf.value = normalize_string_quotes(leaf.value)
1739 def _normalize_f_string(self, string: str, prefix: str) -> str:
1742 * assert_is_leaf_string(@string)
1745 * If @string is an f-string that contains no f-expressions, we
1746 return a string identical to @string except that the 'f' prefix
1747 has been stripped and all double braces (i.e. '{{' or '}}') have
1748 been normalized (i.e. turned into '{' or '}').
1750 * Otherwise, we return @string.
1752 assert_is_leaf_string(string)
1754 if "f" in prefix and not fstring_contains_expr(string):
1755 new_prefix = prefix.replace("f", "")
1757 temp = string[len(prefix) :]
1758 temp = re.sub(r"\{\{", "{", temp)
1759 temp = re.sub(r"\}\}", "}", temp)
1762 return f"{new_prefix}{new_string}"
1766 def _get_string_operator_leaves(self, leaves: Iterable[Leaf]) -> List[Leaf]:
1769 string_op_leaves = []
1771 while LL[i].type in self.STRING_OPERATORS + [token.NAME]:
1772 prefix_leaf = Leaf(LL[i].type, str(LL[i]).strip())
1773 string_op_leaves.append(prefix_leaf)
1775 return string_op_leaves
1778 class StringParenWrapper(BaseStringSplitter, CustomSplitMapMixin):
1780 StringTransformer that wraps strings in parens and then splits at the LPAR.
1783 All of the requirements listed in BaseStringSplitter's docstring in
1784 addition to the requirements listed below:
1786 * The line is a return/yield statement, which returns/yields a string.
1788 * The line is part of a ternary expression (e.g. `x = y if cond else
1789 z`) such that the line starts with `else <string>`, where <string> is
1792 * The line is an assert statement, which ends with a string.
1794 * The line is an assignment statement (e.g. `x = <string>` or `x +=
1795 <string>`) such that the variable is being assigned the value of some
1798 * The line is a dictionary key assignment where some valid key is being
1799 assigned the value of some string.
1801 * The line is an lambda expression and the value is a string.
1803 * The line starts with an "atom" string that prefers to be wrapped in
1804 parens. It's preferred to be wrapped when the string is surrounded by
1805 commas (or is the first/last child).
1808 The chosen string is wrapped in parentheses and then split at the LPAR.
1810 We then have one line which ends with an LPAR and another line that
1811 starts with the chosen string. The latter line is then split again at
1812 the RPAR. This results in the RPAR (and possibly a trailing comma)
1813 being placed on its own line.
1815 NOTE: If any leaves exist to the right of the chosen string (except
1816 for a trailing comma, which would be placed after the RPAR), those
1817 leaves are placed inside the parentheses. In effect, the chosen
1818 string is not necessarily being "wrapped" by parentheses. We can,
1819 however, count on the LPAR being placed directly before the chosen
1822 In other words, StringParenWrapper creates "atom" strings. These
1823 can then be split again by StringSplitter, if necessary.
1826 In the event that a string line split by StringParenWrapper is
1827 changed such that it no longer needs to be given its own line,
1828 StringParenWrapper relies on StringParenStripper to clean up the
1829 parentheses it created.
1831 For "atom" strings that prefers to be wrapped in parens, it requires
1832 StringSplitter to hold the split until the string is wrapped in parens.
1835 def do_splitter_match(self, line: Line) -> TMatchResult:
1838 if line.leaves[-1].type in OPENING_BRACKETS:
1840 "Cannot wrap parens around a line that ends in an opening bracket."
1844 self._return_match(LL)
1845 or self._else_match(LL)
1846 or self._assert_match(LL)
1847 or self._assign_match(LL)
1848 or self._dict_or_lambda_match(LL)
1849 or self._prefer_paren_wrap_match(LL)
1852 if string_idx is not None:
1853 string_value = line.leaves[string_idx].value
1854 # If the string has no spaces...
1855 if " " not in string_value:
1856 # And will still violate the line length limit when split...
1857 max_string_length = self.line_length - ((line.depth + 1) * 4)
1858 if len(string_value) > max_string_length:
1859 # And has no associated custom splits...
1860 if not self.has_custom_splits(string_value):
1861 # Then we should NOT put this string on its own line.
1863 "We do not wrap long strings in parentheses when the"
1864 " resultant line would still be over the specified line"
1865 " length and can't be split further by StringSplitter."
1867 return Ok([string_idx])
1869 return TErr("This line does not contain any non-atomic strings.")
1872 def _return_match(LL: List[Leaf]) -> Optional[int]:
1875 string_idx such that @LL[string_idx] is equal to our target (i.e.
1876 matched) string, if this line matches the return/yield statement
1877 requirements listed in the 'Requirements' section of this classes'
1882 # If this line is apart of a return/yield statement and the first leaf
1883 # contains either the "return" or "yield" keywords...
1884 if parent_type(LL[0]) in [syms.return_stmt, syms.yield_expr] and LL[
1886 ].value in ["return", "yield"]:
1887 is_valid_index = is_valid_index_factory(LL)
1889 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1890 # The next visible leaf MUST contain a string...
1891 if is_valid_index(idx) and LL[idx].type == token.STRING:
1897 def _else_match(LL: List[Leaf]) -> Optional[int]:
1900 string_idx such that @LL[string_idx] is equal to our target (i.e.
1901 matched) string, if this line matches the ternary expression
1902 requirements listed in the 'Requirements' section of this classes'
1907 # If this line is apart of a ternary expression and the first leaf
1908 # contains the "else" keyword...
1910 parent_type(LL[0]) == syms.test
1911 and LL[0].type == token.NAME
1912 and LL[0].value == "else"
1914 is_valid_index = is_valid_index_factory(LL)
1916 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1917 # The next visible leaf MUST contain a string...
1918 if is_valid_index(idx) and LL[idx].type == token.STRING:
1924 def _assert_match(LL: List[Leaf]) -> Optional[int]:
1927 string_idx such that @LL[string_idx] is equal to our target (i.e.
1928 matched) string, if this line matches the assert statement
1929 requirements listed in the 'Requirements' section of this classes'
1934 # If this line is apart of an assert statement and the first leaf
1935 # contains the "assert" keyword...
1936 if parent_type(LL[0]) == syms.assert_stmt and LL[0].value == "assert":
1937 is_valid_index = is_valid_index_factory(LL)
1939 for i, leaf in enumerate(LL):
1940 # We MUST find a comma...
1941 if leaf.type == token.COMMA:
1942 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1944 # That comma MUST be followed by a string...
1945 if is_valid_index(idx) and LL[idx].type == token.STRING:
1948 # Skip the string trailer, if one exists.
1949 string_parser = StringParser()
1950 idx = string_parser.parse(LL, string_idx)
1952 # But no more leaves are allowed...
1953 if not is_valid_index(idx):
1959 def _assign_match(LL: List[Leaf]) -> Optional[int]:
1962 string_idx such that @LL[string_idx] is equal to our target (i.e.
1963 matched) string, if this line matches the assignment statement
1964 requirements listed in the 'Requirements' section of this classes'
1969 # If this line is apart of an expression statement or is a function
1970 # argument AND the first leaf contains a variable name...
1972 parent_type(LL[0]) in [syms.expr_stmt, syms.argument, syms.power]
1973 and LL[0].type == token.NAME
1975 is_valid_index = is_valid_index_factory(LL)
1977 for i, leaf in enumerate(LL):
1978 # We MUST find either an '=' or '+=' symbol...
1979 if leaf.type in [token.EQUAL, token.PLUSEQUAL]:
1980 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1982 # That symbol MUST be followed by a string...
1983 if is_valid_index(idx) and LL[idx].type == token.STRING:
1986 # Skip the string trailer, if one exists.
1987 string_parser = StringParser()
1988 idx = string_parser.parse(LL, string_idx)
1990 # The next leaf MAY be a comma iff this line is apart
1991 # of a function argument...
1993 parent_type(LL[0]) == syms.argument
1994 and is_valid_index(idx)
1995 and LL[idx].type == token.COMMA
1999 # But no more leaves are allowed...
2000 if not is_valid_index(idx):
2006 def _dict_or_lambda_match(LL: List[Leaf]) -> Optional[int]:
2009 string_idx such that @LL[string_idx] is equal to our target (i.e.
2010 matched) string, if this line matches the dictionary key assignment
2011 statement or lambda expression requirements listed in the
2012 'Requirements' section of this classes' docstring.
2016 # If this line is a part of a dictionary key assignment or lambda expression...
2017 parent_types = [parent_type(LL[0]), parent_type(LL[0].parent)]
2018 if syms.dictsetmaker in parent_types or syms.lambdef in parent_types:
2019 is_valid_index = is_valid_index_factory(LL)
2021 for i, leaf in enumerate(LL):
2022 # We MUST find a colon, it can either be dict's or lambda's colon...
2023 if leaf.type == token.COLON and i < len(LL) - 1:
2024 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
2026 # That colon MUST be followed by a string...
2027 if is_valid_index(idx) and LL[idx].type == token.STRING:
2030 # Skip the string trailer, if one exists.
2031 string_parser = StringParser()
2032 idx = string_parser.parse(LL, string_idx)
2034 # That string MAY be followed by a comma...
2035 if is_valid_index(idx) and LL[idx].type == token.COMMA:
2038 # But no more leaves are allowed...
2039 if not is_valid_index(idx):
2045 self, line: Line, string_indices: List[int]
2046 ) -> Iterator[TResult[Line]]:
2048 assert len(string_indices) == 1, (
2049 f"{self.__class__.__name__} should only find one match at a time, found"
2050 f" {len(string_indices)}"
2052 string_idx = string_indices[0]
2054 is_valid_index = is_valid_index_factory(LL)
2055 insert_str_child = insert_str_child_factory(LL[string_idx])
2058 ends_with_comma = False
2059 if LL[comma_idx].type == token.COMMA:
2060 ends_with_comma = True
2062 leaves_to_steal_comments_from = [LL[string_idx]]
2064 leaves_to_steal_comments_from.append(LL[comma_idx])
2067 first_line = line.clone()
2068 left_leaves = LL[:string_idx]
2070 # We have to remember to account for (possibly invisible) LPAR and RPAR
2071 # leaves that already wrapped the target string. If these leaves do
2072 # exist, we will replace them with our own LPAR and RPAR leaves.
2073 old_parens_exist = False
2074 if left_leaves and left_leaves[-1].type == token.LPAR:
2075 old_parens_exist = True
2076 leaves_to_steal_comments_from.append(left_leaves[-1])
2079 append_leaves(first_line, line, left_leaves)
2081 lpar_leaf = Leaf(token.LPAR, "(")
2082 if old_parens_exist:
2083 replace_child(LL[string_idx - 1], lpar_leaf)
2085 insert_str_child(lpar_leaf)
2086 first_line.append(lpar_leaf)
2088 # We throw inline comments that were originally to the right of the
2089 # target string to the top line. They will now be shown to the right of
2091 for leaf in leaves_to_steal_comments_from:
2092 for comment_leaf in line.comments_after(leaf):
2093 first_line.append(comment_leaf, preformatted=True)
2095 yield Ok(first_line)
2097 # --- Middle (String) Line
2098 # We only need to yield one (possibly too long) string line, since the
2099 # `StringSplitter` will break it down further if necessary.
2100 string_value = LL[string_idx].value
2103 depth=line.depth + 1,
2104 inside_brackets=True,
2105 should_split_rhs=line.should_split_rhs,
2106 magic_trailing_comma=line.magic_trailing_comma,
2108 string_leaf = Leaf(token.STRING, string_value)
2109 insert_str_child(string_leaf)
2110 string_line.append(string_leaf)
2112 old_rpar_leaf = None
2113 if is_valid_index(string_idx + 1):
2114 right_leaves = LL[string_idx + 1 :]
2118 if old_parens_exist:
2119 assert right_leaves and right_leaves[-1].type == token.RPAR, (
2120 "Apparently, old parentheses do NOT exist?!"
2121 f" (left_leaves={left_leaves}, right_leaves={right_leaves})"
2123 old_rpar_leaf = right_leaves.pop()
2124 elif right_leaves and right_leaves[-1].type == token.RPAR:
2125 # Special case for lambda expressions as dict's value, e.g.:
2127 # "key": lambda x: f"formatted: {x},
2129 # After wrapping the dict's value with parentheses, the string is
2130 # followed by a RPAR but its opening bracket is lambda's, not
2132 # "key": (lambda x: f"formatted: {x}),
2133 opening_bracket = right_leaves[-1].opening_bracket
2134 if opening_bracket is not None and opening_bracket in left_leaves:
2135 index = left_leaves.index(opening_bracket)
2138 and index < len(left_leaves) - 1
2139 and left_leaves[index - 1].type == token.COLON
2140 and left_leaves[index + 1].value == "lambda"
2144 append_leaves(string_line, line, right_leaves)
2146 yield Ok(string_line)
2149 last_line = line.clone()
2150 last_line.bracket_tracker = first_line.bracket_tracker
2152 new_rpar_leaf = Leaf(token.RPAR, ")")
2153 if old_rpar_leaf is not None:
2154 replace_child(old_rpar_leaf, new_rpar_leaf)
2156 insert_str_child(new_rpar_leaf)
2157 last_line.append(new_rpar_leaf)
2159 # If the target string ended with a comma, we place this comma to the
2160 # right of the RPAR on the last line.
2162 comma_leaf = Leaf(token.COMMA, ",")
2163 replace_child(LL[comma_idx], comma_leaf)
2164 last_line.append(comma_leaf)
2171 A state machine that aids in parsing a string's "trailer", which can be
2172 either non-existent, an old-style formatting sequence (e.g. `% varX` or `%
2173 (varX, varY)`), or a method-call / attribute access (e.g. `.format(varX,
2176 NOTE: A new StringParser object MUST be instantiated for each string
2177 trailer we need to parse.
2180 We shall assume that `line` equals the `Line` object that corresponds
2181 to the following line of python code:
2183 x = "Some {}.".format("String") + some_other_string
2186 Furthermore, we will assume that `string_idx` is some index such that:
2188 assert line.leaves[string_idx].value == "Some {}."
2191 The following code snippet then holds:
2193 string_parser = StringParser()
2194 idx = string_parser.parse(line.leaves, string_idx)
2195 assert line.leaves[idx].type == token.PLUS
2199 DEFAULT_TOKEN: Final = 20210605
2201 # String Parser States
2206 SINGLE_FMT_ARG: Final = 5
2211 # Lookup Table for Next State
2212 _goto: Final[Dict[Tuple[ParserState, NodeType], ParserState]] = {
2213 # A string trailer may start with '.' OR '%'.
2214 (START, token.DOT): DOT,
2215 (START, token.PERCENT): PERCENT,
2216 (START, DEFAULT_TOKEN): DONE,
2217 # A '.' MUST be followed by an attribute or method name.
2218 (DOT, token.NAME): NAME,
2219 # A method name MUST be followed by an '(', whereas an attribute name
2220 # is the last symbol in the string trailer.
2221 (NAME, token.LPAR): LPAR,
2222 (NAME, DEFAULT_TOKEN): DONE,
2223 # A '%' symbol can be followed by an '(' or a single argument (e.g. a
2224 # string or variable name).
2225 (PERCENT, token.LPAR): LPAR,
2226 (PERCENT, DEFAULT_TOKEN): SINGLE_FMT_ARG,
2227 # If a '%' symbol is followed by a single argument, that argument is
2228 # the last leaf in the string trailer.
2229 (SINGLE_FMT_ARG, DEFAULT_TOKEN): DONE,
2230 # If present, a ')' symbol is the last symbol in a string trailer.
2231 # (NOTE: LPARS and nested RPARS are not included in this lookup table,
2232 # since they are treated as a special case by the parsing logic in this
2233 # classes' implementation.)
2234 (RPAR, DEFAULT_TOKEN): DONE,
2237 def __init__(self) -> None:
2238 self._state = self.START
2239 self._unmatched_lpars = 0
2241 def parse(self, leaves: List[Leaf], string_idx: int) -> int:
2244 * @leaves[@string_idx].type == token.STRING
2247 The index directly after the last leaf which is apart of the string
2248 trailer, if a "trailer" exists.
2250 @string_idx + 1, if no string "trailer" exists.
2252 assert leaves[string_idx].type == token.STRING
2254 idx = string_idx + 1
2255 while idx < len(leaves) and self._next_state(leaves[idx]):
2259 def _next_state(self, leaf: Leaf) -> bool:
2262 * On the first call to this function, @leaf MUST be the leaf that
2263 was directly after the string leaf in question (e.g. if our target
2264 string is `line.leaves[i]` then the first call to this method must
2265 be `line.leaves[i + 1]`).
2266 * On the next call to this function, the leaf parameter passed in
2267 MUST be the leaf directly following @leaf.
2270 True iff @leaf is apart of the string's trailer.
2272 # We ignore empty LPAR or RPAR leaves.
2273 if is_empty_par(leaf):
2276 next_token = leaf.type
2277 if next_token == token.LPAR:
2278 self._unmatched_lpars += 1
2280 current_state = self._state
2282 # The LPAR parser state is a special case. We will return True until we
2283 # find the matching RPAR token.
2284 if current_state == self.LPAR:
2285 if next_token == token.RPAR:
2286 self._unmatched_lpars -= 1
2287 if self._unmatched_lpars == 0:
2288 self._state = self.RPAR
2289 # Otherwise, we use a lookup table to determine the next state.
2291 # If the lookup table matches the current state to the next
2292 # token, we use the lookup table.
2293 if (current_state, next_token) in self._goto:
2294 self._state = self._goto[current_state, next_token]
2296 # Otherwise, we check if a the current state was assigned a
2298 if (current_state, self.DEFAULT_TOKEN) in self._goto:
2299 self._state = self._goto[current_state, self.DEFAULT_TOKEN]
2300 # If no default has been assigned, then this parser has a logic
2303 raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
2305 if self._state == self.DONE:
2311 def insert_str_child_factory(string_leaf: Leaf) -> Callable[[LN], None]:
2313 Factory for a convenience function that is used to orphan @string_leaf
2314 and then insert multiple new leaves into the same part of the node
2315 structure that @string_leaf had originally occupied.
2318 Let `string_leaf = Leaf(token.STRING, '"foo"')` and `N =
2319 string_leaf.parent`. Assume the node `N` has the following
2326 Leaf(STRING, '"foo"'),
2330 We then run the code snippet shown below.
2332 insert_str_child = insert_str_child_factory(string_leaf)
2334 lpar = Leaf(token.LPAR, '(')
2335 insert_str_child(lpar)
2337 bar = Leaf(token.STRING, '"bar"')
2338 insert_str_child(bar)
2340 rpar = Leaf(token.RPAR, ')')
2341 insert_str_child(rpar)
2344 After which point, it follows that `string_leaf.parent is None` and
2345 the node `N` now has the following structure:
2352 Leaf(STRING, '"bar"'),
2357 string_parent = string_leaf.parent
2358 string_child_idx = string_leaf.remove()
2360 def insert_str_child(child: LN) -> None:
2361 nonlocal string_child_idx
2363 assert string_parent is not None
2364 assert string_child_idx is not None
2366 string_parent.insert_child(string_child_idx, child)
2367 string_child_idx += 1
2369 return insert_str_child
2372 def is_valid_index_factory(seq: Sequence[Any]) -> Callable[[int], bool]:
2378 is_valid_index = is_valid_index_factory(my_list)
2380 assert is_valid_index(0)
2381 assert is_valid_index(2)
2383 assert not is_valid_index(3)
2384 assert not is_valid_index(-1)
2388 def is_valid_index(idx: int) -> bool:
2391 True iff @idx is positive AND seq[@idx] does NOT raise an
2394 return 0 <= idx < len(seq)
2396 return is_valid_index