All patches and comments are welcome. Please squash your changes to logical
commits before using git-format-patch and git-send-email to
patches@git.madduck.net.
If you'd read over the Git project's submission guidelines and adhered to them,
I'd be especially grateful.
2 String transformers that can split and merge strings.
6 from abc import ABC, abstractmethod
7 from collections import defaultdict
8 from dataclasses import dataclass
26 if sys.version_info < (3, 8):
27 from typing_extensions import Final, Literal
29 from typing import Literal, Final
31 from mypy_extensions import trait
33 from black.brackets import BracketMatchError
34 from black.comments import contains_pragma_comment
35 from black.lines import Line, append_leaves
36 from black.mode import Feature
37 from black.nodes import (
48 from black.rusty import Err, Ok, Result
49 from black.strings import (
50 assert_is_leaf_string,
53 normalize_string_quotes,
55 from blib2to3.pgen2 import token
56 from blib2to3.pytree import Leaf, Node
59 class CannotTransform(Exception):
60 """Base class for errors raised by Transformers."""
65 LN = Union[Leaf, Node]
66 Transformer = Callable[[Line, Collection[Feature]], Iterator[Line]]
71 TResult = Result[T, CannotTransform] # (T)ransform Result
72 TMatchResult = TResult[Index]
75 def TErr(err_msg: str) -> Err[CannotTransform]:
78 Convenience function used when working with the TResult type.
80 cant_transform = CannotTransform(err_msg)
81 return Err(cant_transform)
84 def hug_power_op(line: Line, features: Collection[Feature]) -> Iterator[Line]:
85 """A transformer which normalizes spacing around power operators."""
87 # Performance optimization to avoid unnecessary Leaf clones and other ops.
88 for leaf in line.leaves:
89 if leaf.type == token.DOUBLESTAR:
92 raise CannotTransform("No doublestar token was found in the line.")
94 def is_simple_lookup(index: int, step: Literal[1, -1]) -> bool:
95 # Brackets and parentheses indicate calls, subscripts, etc. ...
96 # basically stuff that doesn't count as "simple". Only a NAME lookup
97 # or dotted lookup (eg. NAME.NAME) is OK.
99 disallowed = {token.RPAR, token.RSQB}
101 disallowed = {token.LPAR, token.LSQB}
103 while 0 <= index < len(line.leaves):
104 current = line.leaves[index]
105 if current.type in disallowed:
107 if current.type not in {token.NAME, token.DOT} or current.value == "for":
108 # If the current token isn't disallowed, we'll assume this is simple as
109 # only the disallowed tokens are semantically attached to this lookup
110 # expression we're checking. Also, stop early if we hit the 'for' bit
111 # of a comprehension.
118 def is_simple_operand(index: int, kind: Literal["base", "exponent"]) -> bool:
119 # An operand is considered "simple" if's a NAME, a numeric CONSTANT, a simple
120 # lookup (see above), with or without a preceding unary operator.
121 start = line.leaves[index]
122 if start.type in {token.NAME, token.NUMBER}:
123 return is_simple_lookup(index, step=(1 if kind == "exponent" else -1))
125 if start.type in {token.PLUS, token.MINUS, token.TILDE}:
126 if line.leaves[index + 1].type in {token.NAME, token.NUMBER}:
127 # step is always one as bases with a preceding unary op will be checked
128 # for simplicity starting from the next token (so it'll hit the check
130 return is_simple_lookup(index + 1, step=1)
134 new_line = line.clone()
136 for idx, leaf in enumerate(line.leaves):
137 new_leaf = leaf.clone()
143 (0 < idx < len(line.leaves) - 1)
144 and leaf.type == token.DOUBLESTAR
145 and is_simple_operand(idx - 1, kind="base")
146 and line.leaves[idx - 1].value != "lambda"
147 and is_simple_operand(idx + 1, kind="exponent")
152 # We have to be careful to make a new line properly:
153 # - bracket related metadata must be maintained (handled by Line.append)
154 # - comments need to copied over, updating the leaf IDs they're attached to
155 new_line.append(new_leaf, preformatted=True)
156 for comment_leaf in line.comments_after(leaf):
157 new_line.append(comment_leaf, preformatted=True)
162 class StringTransformer(ABC):
164 An implementation of the Transformer protocol that relies on its
165 subclasses overriding the template methods `do_match(...)` and
168 This Transformer works exclusively on strings (for example, by merging
171 The following sections can be found among the docstrings of each concrete
172 StringTransformer subclass.
175 Which requirements must be met of the given Line for this
176 StringTransformer to be applied?
179 If the given Line meets all of the above requirements, which string
180 transformations can you expect to be applied to it by this
184 What contractual agreements does this StringTransformer have with other
185 StringTransfomers? Such collaborations should be eliminated/minimized
189 __name__: Final = "StringTransformer"
191 # Ideally this would be a dataclass, but unfortunately mypyc breaks when used with
193 def __init__(self, line_length: int, normalize_strings: bool) -> None:
194 self.line_length = line_length
195 self.normalize_strings = normalize_strings
198 def do_match(self, line: Line) -> TMatchResult:
201 * Ok(string_idx) such that `line.leaves[string_idx]` is our target
202 string, if a match was able to be made.
204 * Err(CannotTransform), if a match was not able to be made.
208 def do_transform(self, line: Line, string_idx: int) -> Iterator[TResult[Line]]:
211 * Ok(new_line) where new_line is the new transformed line.
213 * Err(CannotTransform) if the transformation failed for some reason. The
214 `do_match(...)` template method should usually be used to reject
215 the form of the given Line, but in some cases it is difficult to
216 know whether or not a Line meets the StringTransformer's
217 requirements until the transformation is already midway.
220 This method should NOT mutate @line directly, but it MAY mutate the
221 Line's underlying Node structure. (WARNING: If the underlying Node
222 structure IS altered, then this method should NOT be allowed to
223 yield an CannotTransform after that point.)
226 def __call__(self, line: Line, _features: Collection[Feature]) -> Iterator[Line]:
228 StringTransformer instances have a call signature that mirrors that of
229 the Transformer type.
232 CannotTransform(...) if the concrete StringTransformer class is unable
235 # Optimization to avoid calling `self.do_match(...)` when the line does
236 # not contain any string.
237 if not any(leaf.type == token.STRING for leaf in line.leaves):
238 raise CannotTransform("There are no strings in this line.")
240 match_result = self.do_match(line)
242 if isinstance(match_result, Err):
243 cant_transform = match_result.err()
244 raise CannotTransform(
245 f"The string transformer {self.__class__.__name__} does not recognize"
246 " this line as one that it can transform."
247 ) from cant_transform
249 string_idx = match_result.ok()
251 for line_result in self.do_transform(line, string_idx):
252 if isinstance(line_result, Err):
253 cant_transform = line_result.err()
254 raise CannotTransform(
255 "StringTransformer failed while attempting to transform string."
256 ) from cant_transform
257 line = line_result.ok()
263 """A custom (i.e. manual) string split.
265 A single CustomSplit instance represents a single substring.
268 Consider the following string:
275 This string will correspond to the following three CustomSplit instances:
277 CustomSplit(False, 16)
278 CustomSplit(False, 17)
279 CustomSplit(True, 16)
288 class CustomSplitMapMixin:
290 This mixin class is used to map merged strings to a sequence of
291 CustomSplits, which will then be used to re-split the strings iff none of
292 the resultant substrings go over the configured max line length.
295 _Key: ClassVar = Tuple[StringID, str]
296 _CUSTOM_SPLIT_MAP: ClassVar[Dict[_Key, Tuple[CustomSplit, ...]]] = defaultdict(
301 def _get_key(string: str) -> "CustomSplitMapMixin._Key":
304 A unique identifier that is used internally to map @string to a
305 group of custom splits.
307 return (id(string), string)
309 def add_custom_splits(
310 self, string: str, custom_splits: Iterable[CustomSplit]
312 """Custom Split Map Setter Method
315 Adds a mapping from @string to the custom splits @custom_splits.
317 key = self._get_key(string)
318 self._CUSTOM_SPLIT_MAP[key] = tuple(custom_splits)
320 def pop_custom_splits(self, string: str) -> List[CustomSplit]:
321 """Custom Split Map Getter Method
324 * A list of the custom splits that are mapped to @string, if any
330 Deletes the mapping between @string and its associated custom
331 splits (which are returned to the caller).
333 key = self._get_key(string)
335 custom_splits = self._CUSTOM_SPLIT_MAP[key]
336 del self._CUSTOM_SPLIT_MAP[key]
338 return list(custom_splits)
340 def has_custom_splits(self, string: str) -> bool:
343 True iff @string is associated with a set of custom splits.
345 key = self._get_key(string)
346 return key in self._CUSTOM_SPLIT_MAP
349 class StringMerger(StringTransformer, CustomSplitMapMixin):
350 """StringTransformer that merges strings together.
353 (A) The line contains adjacent strings such that ALL of the validation checks
354 listed in StringMerger.__validate_msg(...)'s docstring pass.
356 (B) The line contains a string which uses line continuation backslashes.
359 Depending on which of the two requirements above where met, either:
361 (A) The string group associated with the target string is merged.
363 (B) All line-continuation backslashes are removed from the target string.
366 StringMerger provides custom split information to StringSplitter.
369 def do_match(self, line: Line) -> TMatchResult:
372 is_valid_index = is_valid_index_factory(LL)
374 for i, leaf in enumerate(LL):
376 leaf.type == token.STRING
377 and is_valid_index(i + 1)
378 and LL[i + 1].type == token.STRING
382 if leaf.type == token.STRING and "\\\n" in leaf.value:
385 return TErr("This line has no strings that need merging.")
387 def do_transform(self, line: Line, string_idx: int) -> Iterator[TResult[Line]]:
389 rblc_result = self._remove_backslash_line_continuation_chars(
392 if isinstance(rblc_result, Ok):
393 new_line = rblc_result.ok()
395 msg_result = self._merge_string_group(new_line, string_idx)
396 if isinstance(msg_result, Ok):
397 new_line = msg_result.ok()
399 if isinstance(rblc_result, Err) and isinstance(msg_result, Err):
400 msg_cant_transform = msg_result.err()
401 rblc_cant_transform = rblc_result.err()
402 cant_transform = CannotTransform(
403 "StringMerger failed to merge any strings in this line."
406 # Chain the errors together using `__cause__`.
407 msg_cant_transform.__cause__ = rblc_cant_transform
408 cant_transform.__cause__ = msg_cant_transform
410 yield Err(cant_transform)
415 def _remove_backslash_line_continuation_chars(
416 line: Line, string_idx: int
419 Merge strings that were split across multiple lines using
420 line-continuation backslashes.
423 Ok(new_line), if @line contains backslash line-continuation
426 Err(CannotTransform), otherwise.
430 string_leaf = LL[string_idx]
432 string_leaf.type == token.STRING
433 and "\\\n" in string_leaf.value
434 and not has_triple_quotes(string_leaf.value)
437 f"String leaf {string_leaf} does not contain any backslash line"
438 " continuation characters."
441 new_line = line.clone()
442 new_line.comments = line.comments.copy()
443 append_leaves(new_line, line, LL)
445 new_string_leaf = new_line.leaves[string_idx]
446 new_string_leaf.value = new_string_leaf.value.replace("\\\n", "")
450 def _merge_string_group(self, line: Line, string_idx: int) -> TResult[Line]:
452 Merges string group (i.e. set of adjacent strings) where the first
453 string in the group is `line.leaves[string_idx]`.
456 Ok(new_line), if ALL of the validation checks found in
457 __validate_msg(...) pass.
459 Err(CannotTransform), otherwise.
463 is_valid_index = is_valid_index_factory(LL)
465 vresult = self._validate_msg(line, string_idx)
466 if isinstance(vresult, Err):
469 # If the string group is wrapped inside an Atom node, we must make sure
470 # to later replace that Atom with our new (merged) string leaf.
471 atom_node = LL[string_idx].parent
473 # We will place BREAK_MARK in between every two substrings that we
474 # merge. We will then later go through our final result and use the
475 # various instances of BREAK_MARK we find to add the right values to
476 # the custom split map.
477 BREAK_MARK = "@@@@@ BLACK BREAKPOINT MARKER @@@@@"
479 QUOTE = LL[string_idx].value[-1]
481 def make_naked(string: str, string_prefix: str) -> str:
482 """Strip @string (i.e. make it a "naked" string)
485 * assert_is_leaf_string(@string)
488 A string that is identical to @string except that
489 @string_prefix has been stripped, the surrounding QUOTE
490 characters have been removed, and any remaining QUOTE
491 characters have been escaped.
493 assert_is_leaf_string(string)
495 RE_EVEN_BACKSLASHES = r"(?:(?<!\\)(?:\\\\)*)"
496 naked_string = string[len(string_prefix) + 1 : -1]
497 naked_string = re.sub(
498 "(" + RE_EVEN_BACKSLASHES + ")" + QUOTE, r"\1\\" + QUOTE, naked_string
502 # Holds the CustomSplit objects that will later be added to the custom
506 # Temporary storage for the 'has_prefix' part of the CustomSplit objects.
509 # Sets the 'prefix' variable. This is the prefix that the final merged
511 next_str_idx = string_idx
515 and is_valid_index(next_str_idx)
516 and LL[next_str_idx].type == token.STRING
518 prefix = get_string_prefix(LL[next_str_idx].value).lower()
521 # The next loop merges the string group. The final string will be
524 # The following convenience variables are used:
529 # NSS: naked next string
533 next_str_idx = string_idx
534 while is_valid_index(next_str_idx) and LL[next_str_idx].type == token.STRING:
537 SS = LL[next_str_idx].value
538 next_prefix = get_string_prefix(SS).lower()
540 # If this is an f-string group but this substring is not prefixed
542 if "f" in prefix and "f" not in next_prefix:
543 # Then we must escape any braces contained in this substring.
544 SS = re.sub(r"(\{|\})", r"\1\1", SS)
546 NSS = make_naked(SS, next_prefix)
548 has_prefix = bool(next_prefix)
549 prefix_tracker.append(has_prefix)
551 S = prefix + QUOTE + NS + NSS + BREAK_MARK + QUOTE
552 NS = make_naked(S, prefix)
556 # Take a note on the index of the non-STRING leaf.
557 non_string_idx = next_str_idx
559 S_leaf = Leaf(token.STRING, S)
560 if self.normalize_strings:
561 S_leaf.value = normalize_string_quotes(S_leaf.value)
563 # Fill the 'custom_splits' list with the appropriate CustomSplit objects.
564 temp_string = S_leaf.value[len(prefix) + 1 : -1]
565 for has_prefix in prefix_tracker:
566 mark_idx = temp_string.find(BREAK_MARK)
569 ), "Logic error while filling the custom string breakpoint cache."
571 temp_string = temp_string[mark_idx + len(BREAK_MARK) :]
572 breakpoint_idx = mark_idx + (len(prefix) if has_prefix else 0) + 1
573 custom_splits.append(CustomSplit(has_prefix, breakpoint_idx))
575 string_leaf = Leaf(token.STRING, S_leaf.value.replace(BREAK_MARK, ""))
577 if atom_node is not None:
578 # If not all children of the atom node are merged (this can happen
579 # when there is a standalone comment in the middle) ...
580 if non_string_idx - string_idx < len(atom_node.children):
581 # We need to replace the old STRING leaves with the new string leaf.
582 first_child_idx = LL[string_idx].remove()
583 for idx in range(string_idx + 1, non_string_idx):
585 if first_child_idx is not None:
586 atom_node.insert_child(first_child_idx, string_leaf)
588 # Else replace the atom node with the new string leaf.
589 replace_child(atom_node, string_leaf)
591 # Build the final line ('new_line') that this method will later return.
592 new_line = line.clone()
593 for i, leaf in enumerate(LL):
595 new_line.append(string_leaf)
597 if string_idx <= i < string_idx + num_of_strings:
598 for comment_leaf in line.comments_after(LL[i]):
599 new_line.append(comment_leaf, preformatted=True)
602 append_leaves(new_line, line, [leaf])
604 self.add_custom_splits(string_leaf.value, custom_splits)
608 def _validate_msg(line: Line, string_idx: int) -> TResult[None]:
609 """Validate (M)erge (S)tring (G)roup
611 Transform-time string validation logic for __merge_string_group(...).
614 * Ok(None), if ALL validation checks (listed below) pass.
616 * Err(CannotTransform), if any of the following are true:
617 - The target string group does not contain ANY stand-alone comments.
618 - The target string is not in a string group (i.e. it has no
620 - The string group has more than one inline comment.
621 - The string group has an inline comment that appears to be a pragma.
622 - The set of all string prefixes in the string group is of
623 length greater than one and is not equal to {"", "f"}.
624 - The string group consists of raw strings.
626 # We first check for "inner" stand-alone comments (i.e. stand-alone
627 # comments that have a string leaf before them AND after them).
630 found_sa_comment = False
631 is_valid_index = is_valid_index_factory(line.leaves)
632 while is_valid_index(i) and line.leaves[i].type in [
636 if line.leaves[i].type == STANDALONE_COMMENT:
637 found_sa_comment = True
638 elif found_sa_comment:
640 "StringMerger does NOT merge string groups which contain "
641 "stand-alone comments."
646 num_of_inline_string_comments = 0
647 set_of_prefixes = set()
649 for leaf in line.leaves[string_idx:]:
650 if leaf.type != token.STRING:
651 # If the string group is trailed by a comma, we count the
652 # comments trailing the comma to be one of the string group's
654 if leaf.type == token.COMMA and id(leaf) in line.comments:
655 num_of_inline_string_comments += 1
658 if has_triple_quotes(leaf.value):
659 return TErr("StringMerger does NOT merge multiline strings.")
662 prefix = get_string_prefix(leaf.value).lower()
664 return TErr("StringMerger does NOT merge raw strings.")
666 set_of_prefixes.add(prefix)
668 if id(leaf) in line.comments:
669 num_of_inline_string_comments += 1
670 if contains_pragma_comment(line.comments[id(leaf)]):
671 return TErr("Cannot merge strings which have pragma comments.")
673 if num_of_strings < 2:
675 f"Not enough strings to merge (num_of_strings={num_of_strings})."
678 if num_of_inline_string_comments > 1:
680 f"Too many inline string comments ({num_of_inline_string_comments})."
683 if len(set_of_prefixes) > 1 and set_of_prefixes != {"", "f"}:
684 return TErr(f"Too many different prefixes ({set_of_prefixes}).")
689 class StringParenStripper(StringTransformer):
690 """StringTransformer that strips surrounding parentheses from strings.
693 The line contains a string which is surrounded by parentheses and:
694 - The target string is NOT the only argument to a function call.
695 - The target string is NOT a "pointless" string.
696 - If the target string contains a PERCENT, the brackets are not
697 preceded or followed by an operator with higher precedence than
701 The parentheses mentioned in the 'Requirements' section are stripped.
704 StringParenStripper has its own inherent usefulness, but it is also
705 relied on to clean up the parentheses created by StringParenWrapper (in
706 the event that they are no longer needed).
709 def do_match(self, line: Line) -> TMatchResult:
712 is_valid_index = is_valid_index_factory(LL)
714 for idx, leaf in enumerate(LL):
715 # Should be a string...
716 if leaf.type != token.STRING:
719 # If this is a "pointless" string...
722 and leaf.parent.parent
723 and leaf.parent.parent.type == syms.simple_stmt
727 # Should be preceded by a non-empty LPAR...
729 not is_valid_index(idx - 1)
730 or LL[idx - 1].type != token.LPAR
731 or is_empty_lpar(LL[idx - 1])
735 # That LPAR should NOT be preceded by a function name or a closing
736 # bracket (which could be a function which returns a function or a
737 # list/dictionary that contains a function)...
738 if is_valid_index(idx - 2) and (
739 LL[idx - 2].type == token.NAME or LL[idx - 2].type in CLOSING_BRACKETS
745 # Skip the string trailer, if one exists.
746 string_parser = StringParser()
747 next_idx = string_parser.parse(LL, string_idx)
749 # if the leaves in the parsed string include a PERCENT, we need to
750 # make sure the initial LPAR is NOT preceded by an operator with
751 # higher or equal precedence to PERCENT
752 if is_valid_index(idx - 2):
753 # mypy can't quite follow unless we name this
754 before_lpar = LL[idx - 2]
755 if token.PERCENT in {leaf.type for leaf in LL[idx - 1 : next_idx]} and (
772 # only unary PLUS/MINUS
774 and before_lpar.parent.type == syms.factor
775 and (before_lpar.type in {token.PLUS, token.MINUS})
780 # Should be followed by a non-empty RPAR...
782 is_valid_index(next_idx)
783 and LL[next_idx].type == token.RPAR
784 and not is_empty_rpar(LL[next_idx])
786 # That RPAR should NOT be followed by anything with higher
787 # precedence than PERCENT
788 if is_valid_index(next_idx + 1) and LL[next_idx + 1].type in {
796 return Ok(string_idx)
798 return TErr("This line has no strings wrapped in parens.")
800 def do_transform(self, line: Line, string_idx: int) -> Iterator[TResult[Line]]:
803 string_parser = StringParser()
804 rpar_idx = string_parser.parse(LL, string_idx)
806 for leaf in (LL[string_idx - 1], LL[rpar_idx]):
807 if line.comments_after(leaf):
809 "Will not strip parentheses which have comments attached to them."
813 new_line = line.clone()
814 new_line.comments = line.comments.copy()
816 append_leaves(new_line, line, LL[: string_idx - 1])
817 except BracketMatchError:
818 # HACK: I believe there is currently a bug somewhere in
819 # right_hand_split() that is causing brackets to not be tracked
820 # properly by a shared BracketTracker.
821 append_leaves(new_line, line, LL[: string_idx - 1], preformatted=True)
823 string_leaf = Leaf(token.STRING, LL[string_idx].value)
824 LL[string_idx - 1].remove()
825 replace_child(LL[string_idx], string_leaf)
826 new_line.append(string_leaf)
829 new_line, line, LL[string_idx + 1 : rpar_idx] + LL[rpar_idx + 1 :]
832 LL[rpar_idx].remove()
837 class BaseStringSplitter(StringTransformer):
839 Abstract class for StringTransformers which transform a Line's strings by splitting
840 them or placing them on their own lines where necessary to avoid going over
841 the configured line length.
844 * The target string value is responsible for the line going over the
845 line length limit. It follows that after all of black's other line
846 split methods have been exhausted, this line (or one of the resulting
847 lines after all line splits are performed) would still be over the
848 line_length limit unless we split this string.
850 * The target string is NOT a "pointless" string (i.e. a string that has
851 no parent or siblings).
853 * The target string is not followed by an inline comment that appears
856 * The target string is not a multiline (i.e. triple-quote) string.
859 STRING_OPERATORS: Final = [
872 def do_splitter_match(self, line: Line) -> TMatchResult:
874 BaseStringSplitter asks its clients to override this method instead of
875 `StringTransformer.do_match(...)`.
877 Follows the same protocol as `StringTransformer.do_match(...)`.
879 Refer to `help(StringTransformer.do_match)` for more information.
882 def do_match(self, line: Line) -> TMatchResult:
883 match_result = self.do_splitter_match(line)
884 if isinstance(match_result, Err):
887 string_idx = match_result.ok()
888 vresult = self._validate(line, string_idx)
889 if isinstance(vresult, Err):
894 def _validate(self, line: Line, string_idx: int) -> TResult[None]:
896 Checks that @line meets all of the requirements listed in this classes'
897 docstring. Refer to `help(BaseStringSplitter)` for a detailed
898 description of those requirements.
901 * Ok(None), if ALL of the requirements are met.
903 * Err(CannotTransform), if ANY of the requirements are NOT met.
907 string_leaf = LL[string_idx]
909 max_string_length = self._get_max_string_length(line, string_idx)
910 if len(string_leaf.value) <= max_string_length:
912 "The string itself is not what is causing this line to be too long."
915 if not string_leaf.parent or [L.type for L in string_leaf.parent.children] == [
920 f"This string ({string_leaf.value}) appears to be pointless (i.e. has"
924 if id(line.leaves[string_idx]) in line.comments and contains_pragma_comment(
925 line.comments[id(line.leaves[string_idx])]
928 "Line appears to end with an inline pragma comment. Splitting the line"
929 " could modify the pragma's behavior."
932 if has_triple_quotes(string_leaf.value):
933 return TErr("We cannot split multiline strings.")
937 def _get_max_string_length(self, line: Line, string_idx: int) -> int:
939 Calculates the max string length used when attempting to determine
940 whether or not the target string is responsible for causing the line to
941 go over the line length limit.
943 WARNING: This method is tightly coupled to both StringSplitter and
944 (especially) StringParenWrapper. There is probably a better way to
945 accomplish what is being done here.
948 max_string_length: such that `line.leaves[string_idx].value >
949 max_string_length` implies that the target string IS responsible
950 for causing this line to exceed the line length limit.
954 is_valid_index = is_valid_index_factory(LL)
956 # We use the shorthand "WMA4" in comments to abbreviate "We must
957 # account for". When giving examples, we use STRING to mean some/any
960 # Finally, we use the following convenience variables:
962 # P: The leaf that is before the target string leaf.
963 # N: The leaf that is after the target string leaf.
964 # NN: The leaf that is after N.
966 # WMA4 the whitespace at the beginning of the line.
967 offset = line.depth * 4
969 if is_valid_index(string_idx - 1):
970 p_idx = string_idx - 1
972 LL[string_idx - 1].type == token.LPAR
973 and LL[string_idx - 1].value == ""
976 # If the previous leaf is an empty LPAR placeholder, we should skip it.
980 if P.type in self.STRING_OPERATORS:
981 # WMA4 a space and a string operator (e.g. `+ STRING` or `== STRING`).
982 offset += len(str(P)) + 1
984 if P.type == token.COMMA:
985 # WMA4 a space, a comma, and a closing bracket [e.g. `), STRING`].
988 if P.type in [token.COLON, token.EQUAL, token.PLUSEQUAL, token.NAME]:
989 # This conditional branch is meant to handle dictionary keys,
990 # variable assignments, 'return STRING' statement lines, and
991 # 'else STRING' ternary expression lines.
993 # WMA4 a single space.
996 # WMA4 the lengths of any leaves that came before that space,
997 # but after any closing bracket before that space.
998 for leaf in reversed(LL[: p_idx + 1]):
999 offset += len(str(leaf))
1000 if leaf.type in CLOSING_BRACKETS:
1003 if is_valid_index(string_idx + 1):
1004 N = LL[string_idx + 1]
1005 if N.type == token.RPAR and N.value == "" and len(LL) > string_idx + 2:
1006 # If the next leaf is an empty RPAR placeholder, we should skip it.
1007 N = LL[string_idx + 2]
1009 if N.type == token.COMMA:
1010 # WMA4 a single comma at the end of the string (e.g `STRING,`).
1013 if is_valid_index(string_idx + 2):
1014 NN = LL[string_idx + 2]
1016 if N.type == token.DOT and NN.type == token.NAME:
1017 # This conditional branch is meant to handle method calls invoked
1018 # off of a string literal up to and including the LPAR character.
1020 # WMA4 the '.' character.
1024 is_valid_index(string_idx + 3)
1025 and LL[string_idx + 3].type == token.LPAR
1027 # WMA4 the left parenthesis character.
1030 # WMA4 the length of the method's name.
1031 offset += len(NN.value)
1033 has_comments = False
1034 for comment_leaf in line.comments_after(LL[string_idx]):
1035 if not has_comments:
1037 # WMA4 two spaces before the '#' character.
1040 # WMA4 the length of the inline comment.
1041 offset += len(comment_leaf.value)
1043 max_string_length = self.line_length - offset
1044 return max_string_length
1047 def _prefer_paren_wrap_match(LL: List[Leaf]) -> Optional[int]:
1050 string_idx such that @LL[string_idx] is equal to our target (i.e.
1051 matched) string, if this line matches the "prefer paren wrap" statement
1052 requirements listed in the 'Requirements' section of the StringParenWrapper
1057 # The line must start with a string.
1058 if LL[0].type != token.STRING:
1061 # If the string is surrounded by commas (or is the first/last child)...
1062 prev_sibling = LL[0].prev_sibling
1063 next_sibling = LL[0].next_sibling
1064 if not prev_sibling and not next_sibling and parent_type(LL[0]) == syms.atom:
1065 # If it's an atom string, we need to check the parent atom's siblings.
1066 parent = LL[0].parent
1067 assert parent is not None # For type checkers.
1068 prev_sibling = parent.prev_sibling
1069 next_sibling = parent.next_sibling
1070 if (not prev_sibling or prev_sibling.type == token.COMMA) and (
1071 not next_sibling or next_sibling.type == token.COMMA
1078 def iter_fexpr_spans(s: str) -> Iterator[Tuple[int, int]]:
1080 Yields spans corresponding to expressions in a given f-string.
1081 Spans are half-open ranges (left inclusive, right exclusive).
1082 Assumes the input string is a valid f-string, but will not crash if the input
1085 stack: List[int] = [] # our curly paren stack
1089 # if we're in a string part of the f-string, ignore escaped curly braces
1090 if not stack and i + 1 < len(s) and s[i + 1] == "{":
1102 # we've made it back out of the expression! yield the span
1108 # if we're in an expression part of the f-string, fast forward through strings
1109 # note that backslashes are not legal in the expression portion of f-strings
1112 if s[i : i + 3] in ("'''", '"""'):
1113 delim = s[i : i + 3]
1114 elif s[i] in ("'", '"'):
1118 while i < len(s) and s[i : i + len(delim)] != delim:
1125 def fstring_contains_expr(s: str) -> bool:
1126 return any(iter_fexpr_spans(s))
1129 class StringSplitter(BaseStringSplitter, CustomSplitMapMixin):
1131 StringTransformer that splits "atom" strings (i.e. strings which exist on
1132 lines by themselves).
1135 * The line consists ONLY of a single string (possibly prefixed by a
1136 string operator [e.g. '+' or '==']), MAYBE a string trailer, and MAYBE
1139 * All of the requirements listed in BaseStringSplitter's docstring.
1142 The string mentioned in the 'Requirements' section is split into as
1143 many substrings as necessary to adhere to the configured line length.
1145 In the final set of substrings, no substring should be smaller than
1146 MIN_SUBSTR_SIZE characters.
1148 The string will ONLY be split on spaces (i.e. each new substring should
1149 start with a space). Note that the string will NOT be split on a space
1150 which is escaped with a backslash.
1152 If the string is an f-string, it will NOT be split in the middle of an
1153 f-expression (e.g. in f"FooBar: {foo() if x else bar()}", {foo() if x
1154 else bar()} is an f-expression).
1156 If the string that is being split has an associated set of custom split
1157 records and those custom splits will NOT result in any line going over
1158 the configured line length, those custom splits are used. Otherwise the
1159 string is split as late as possible (from left-to-right) while still
1160 adhering to the transformation rules listed above.
1163 StringSplitter relies on StringMerger to construct the appropriate
1164 CustomSplit objects and add them to the custom split map.
1167 MIN_SUBSTR_SIZE: Final = 6
1169 def do_splitter_match(self, line: Line) -> TMatchResult:
1172 if self._prefer_paren_wrap_match(LL) is not None:
1173 return TErr("Line needs to be wrapped in parens first.")
1175 is_valid_index = is_valid_index_factory(LL)
1179 # The first two leaves MAY be the 'not in' keywords...
1182 and is_valid_index(idx + 1)
1183 and [LL[idx].type, LL[idx + 1].type] == [token.NAME, token.NAME]
1184 and str(LL[idx]) + str(LL[idx + 1]) == "not in"
1187 # Else the first leaf MAY be a string operator symbol or the 'in' keyword...
1188 elif is_valid_index(idx) and (
1189 LL[idx].type in self.STRING_OPERATORS
1190 or LL[idx].type == token.NAME
1191 and str(LL[idx]) == "in"
1195 # The next/first leaf MAY be an empty LPAR...
1196 if is_valid_index(idx) and is_empty_lpar(LL[idx]):
1199 # The next/first leaf MUST be a string...
1200 if not is_valid_index(idx) or LL[idx].type != token.STRING:
1201 return TErr("Line does not start with a string.")
1205 # Skip the string trailer, if one exists.
1206 string_parser = StringParser()
1207 idx = string_parser.parse(LL, string_idx)
1209 # That string MAY be followed by an empty RPAR...
1210 if is_valid_index(idx) and is_empty_rpar(LL[idx]):
1213 # That string / empty RPAR leaf MAY be followed by a comma...
1214 if is_valid_index(idx) and LL[idx].type == token.COMMA:
1217 # But no more leaves are allowed...
1218 if is_valid_index(idx):
1219 return TErr("This line does not end with a string.")
1221 return Ok(string_idx)
1223 def do_transform(self, line: Line, string_idx: int) -> Iterator[TResult[Line]]:
1226 QUOTE = LL[string_idx].value[-1]
1228 is_valid_index = is_valid_index_factory(LL)
1229 insert_str_child = insert_str_child_factory(LL[string_idx])
1231 prefix = get_string_prefix(LL[string_idx].value).lower()
1233 # We MAY choose to drop the 'f' prefix from substrings that don't
1234 # contain any f-expressions, but ONLY if the original f-string
1235 # contains at least one f-expression. Otherwise, we will alter the AST
1237 drop_pointless_f_prefix = ("f" in prefix) and fstring_contains_expr(
1238 LL[string_idx].value
1241 first_string_line = True
1243 string_op_leaves = self._get_string_operator_leaves(LL)
1244 string_op_leaves_length = (
1245 sum(len(str(prefix_leaf)) for prefix_leaf in string_op_leaves) + 1
1250 def maybe_append_string_operators(new_line: Line) -> None:
1253 If @line starts with a string operator and this is the first
1254 line we are constructing, this function appends the string
1255 operator to @new_line and replaces the old string operator leaf
1256 in the node structure. Otherwise this function does nothing.
1258 maybe_prefix_leaves = string_op_leaves if first_string_line else []
1259 for i, prefix_leaf in enumerate(maybe_prefix_leaves):
1260 replace_child(LL[i], prefix_leaf)
1261 new_line.append(prefix_leaf)
1264 is_valid_index(string_idx + 1) and LL[string_idx + 1].type == token.COMMA
1267 def max_last_string() -> int:
1270 The max allowed length of the string value used for the last
1271 line we will construct.
1273 result = self.line_length
1274 result -= line.depth * 4
1275 result -= 1 if ends_with_comma else 0
1276 result -= string_op_leaves_length
1279 # --- Calculate Max Break Index (for string value)
1280 # We start with the line length limit
1281 max_break_idx = self.line_length
1282 # The last index of a string of length N is N-1.
1284 # Leading whitespace is not present in the string value (e.g. Leaf.value).
1285 max_break_idx -= line.depth * 4
1286 if max_break_idx < 0:
1288 f"Unable to split {LL[string_idx].value} at such high of a line depth:"
1293 # Check if StringMerger registered any custom splits.
1294 custom_splits = self.pop_custom_splits(LL[string_idx].value)
1295 # We use them ONLY if none of them would produce lines that exceed the
1297 use_custom_breakpoints = bool(
1299 and all(csplit.break_idx <= max_break_idx for csplit in custom_splits)
1302 # Temporary storage for the remaining chunk of the string line that
1303 # can't fit onto the line currently being constructed.
1304 rest_value = LL[string_idx].value
1306 def more_splits_should_be_made() -> bool:
1309 True iff `rest_value` (the remaining string value from the last
1310 split), should be split again.
1312 if use_custom_breakpoints:
1313 return len(custom_splits) > 1
1315 return len(rest_value) > max_last_string()
1317 string_line_results: List[Ok[Line]] = []
1318 while more_splits_should_be_made():
1319 if use_custom_breakpoints:
1320 # Custom User Split (manual)
1321 csplit = custom_splits.pop(0)
1322 break_idx = csplit.break_idx
1324 # Algorithmic Split (automatic)
1325 max_bidx = max_break_idx - string_op_leaves_length
1326 maybe_break_idx = self._get_break_idx(rest_value, max_bidx)
1327 if maybe_break_idx is None:
1328 # If we are unable to algorithmically determine a good split
1329 # and this string has custom splits registered to it, we
1330 # fall back to using them--which means we have to start
1331 # over from the beginning.
1333 rest_value = LL[string_idx].value
1334 string_line_results = []
1335 first_string_line = True
1336 use_custom_breakpoints = True
1339 # Otherwise, we stop splitting here.
1342 break_idx = maybe_break_idx
1344 # --- Construct `next_value`
1345 next_value = rest_value[:break_idx] + QUOTE
1347 # HACK: The following 'if' statement is a hack to fix the custom
1348 # breakpoint index in the case of either: (a) substrings that were
1349 # f-strings but will have the 'f' prefix removed OR (b) substrings
1350 # that were not f-strings but will now become f-strings because of
1351 # redundant use of the 'f' prefix (i.e. none of the substrings
1352 # contain f-expressions but one or more of them had the 'f' prefix
1353 # anyway; in which case, we will prepend 'f' to _all_ substrings).
1355 # There is probably a better way to accomplish what is being done
1358 # If this substring is an f-string, we _could_ remove the 'f'
1359 # prefix, and the current custom split did NOT originally use a
1362 next_value != self._normalize_f_string(next_value, prefix)
1363 and use_custom_breakpoints
1364 and not csplit.has_prefix
1366 # Then `csplit.break_idx` will be off by one after removing
1369 next_value = rest_value[:break_idx] + QUOTE
1371 if drop_pointless_f_prefix:
1372 next_value = self._normalize_f_string(next_value, prefix)
1374 # --- Construct `next_leaf`
1375 next_leaf = Leaf(token.STRING, next_value)
1376 insert_str_child(next_leaf)
1377 self._maybe_normalize_string_quotes(next_leaf)
1379 # --- Construct `next_line`
1380 next_line = line.clone()
1381 maybe_append_string_operators(next_line)
1382 next_line.append(next_leaf)
1383 string_line_results.append(Ok(next_line))
1385 rest_value = prefix + QUOTE + rest_value[break_idx:]
1386 first_string_line = False
1388 yield from string_line_results
1390 if drop_pointless_f_prefix:
1391 rest_value = self._normalize_f_string(rest_value, prefix)
1393 rest_leaf = Leaf(token.STRING, rest_value)
1394 insert_str_child(rest_leaf)
1396 # NOTE: I could not find a test case that verifies that the following
1397 # line is actually necessary, but it seems to be. Otherwise we risk
1398 # not normalizing the last substring, right?
1399 self._maybe_normalize_string_quotes(rest_leaf)
1401 last_line = line.clone()
1402 maybe_append_string_operators(last_line)
1404 # If there are any leaves to the right of the target string...
1405 if is_valid_index(string_idx + 1):
1406 # We use `temp_value` here to determine how long the last line
1407 # would be if we were to append all the leaves to the right of the
1408 # target string to the last string line.
1409 temp_value = rest_value
1410 for leaf in LL[string_idx + 1 :]:
1411 temp_value += str(leaf)
1412 if leaf.type == token.LPAR:
1415 # Try to fit them all on the same line with the last substring...
1417 len(temp_value) <= max_last_string()
1418 or LL[string_idx + 1].type == token.COMMA
1420 last_line.append(rest_leaf)
1421 append_leaves(last_line, line, LL[string_idx + 1 :])
1423 # Otherwise, place the last substring on one line and everything
1424 # else on a line below that...
1426 last_line.append(rest_leaf)
1429 non_string_line = line.clone()
1430 append_leaves(non_string_line, line, LL[string_idx + 1 :])
1431 yield Ok(non_string_line)
1432 # Else the target string was the last leaf...
1434 last_line.append(rest_leaf)
1435 last_line.comments = line.comments.copy()
1438 def _iter_nameescape_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
1441 All ranges of @string which, if @string were to be split there,
1442 would result in the splitting of an \\N{...} expression (which is NOT
1445 # True - the previous backslash was unescaped
1446 # False - the previous backslash was escaped *or* there was no backslash
1447 previous_was_unescaped_backslash = False
1448 it = iter(enumerate(string))
1451 previous_was_unescaped_backslash = not previous_was_unescaped_backslash
1453 if not previous_was_unescaped_backslash or c != "N":
1454 previous_was_unescaped_backslash = False
1456 previous_was_unescaped_backslash = False
1458 begin = idx - 1 # the position of backslash before \N{...}
1464 # malformed nameescape expression?
1465 # should have been detected by AST parsing earlier...
1466 raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
1469 def _iter_fexpr_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
1472 All ranges of @string which, if @string were to be split there,
1473 would result in the splitting of an f-expression (which is NOT
1476 if "f" not in get_string_prefix(string).lower():
1478 yield from iter_fexpr_spans(string)
1480 def _get_illegal_split_indices(self, string: str) -> Set[Index]:
1481 illegal_indices: Set[Index] = set()
1483 self._iter_fexpr_slices(string),
1484 self._iter_nameescape_slices(string),
1486 for it in iterators:
1487 for begin, end in it:
1488 illegal_indices.update(range(begin, end + 1))
1489 return illegal_indices
1491 def _get_break_idx(self, string: str, max_break_idx: int) -> Optional[int]:
1493 This method contains the algorithm that StringSplitter uses to
1494 determine which character to split each string at.
1497 @string: The substring that we are attempting to split.
1498 @max_break_idx: The ideal break index. We will return this value if it
1499 meets all the necessary conditions. In the likely event that it
1500 doesn't we will try to find the closest index BELOW @max_break_idx
1501 that does. If that fails, we will expand our search by also
1502 considering all valid indices ABOVE @max_break_idx.
1505 * assert_is_leaf_string(@string)
1506 * 0 <= @max_break_idx < len(@string)
1509 break_idx, if an index is able to be found that meets all of the
1510 conditions listed in the 'Transformations' section of this classes'
1515 is_valid_index = is_valid_index_factory(string)
1517 assert is_valid_index(max_break_idx)
1518 assert_is_leaf_string(string)
1520 _illegal_split_indices = self._get_illegal_split_indices(string)
1522 def breaks_unsplittable_expression(i: Index) -> bool:
1525 True iff returning @i would result in the splitting of an
1526 unsplittable expression (which is NOT allowed).
1528 return i in _illegal_split_indices
1530 def passes_all_checks(i: Index) -> bool:
1533 True iff ALL of the conditions listed in the 'Transformations'
1534 section of this classes' docstring would be be met by returning @i.
1536 is_space = string[i] == " "
1538 is_not_escaped = True
1540 while is_valid_index(j) and string[j] == "\\":
1541 is_not_escaped = not is_not_escaped
1545 len(string[i:]) >= self.MIN_SUBSTR_SIZE
1546 and len(string[:i]) >= self.MIN_SUBSTR_SIZE
1552 and not breaks_unsplittable_expression(i)
1555 # First, we check all indices BELOW @max_break_idx.
1556 break_idx = max_break_idx
1557 while is_valid_index(break_idx - 1) and not passes_all_checks(break_idx):
1560 if not passes_all_checks(break_idx):
1561 # If that fails, we check all indices ABOVE @max_break_idx.
1563 # If we are able to find a valid index here, the next line is going
1564 # to be longer than the specified line length, but it's probably
1565 # better than doing nothing at all.
1566 break_idx = max_break_idx + 1
1567 while is_valid_index(break_idx + 1) and not passes_all_checks(break_idx):
1570 if not is_valid_index(break_idx) or not passes_all_checks(break_idx):
1575 def _maybe_normalize_string_quotes(self, leaf: Leaf) -> None:
1576 if self.normalize_strings:
1577 leaf.value = normalize_string_quotes(leaf.value)
1579 def _normalize_f_string(self, string: str, prefix: str) -> str:
1582 * assert_is_leaf_string(@string)
1585 * If @string is an f-string that contains no f-expressions, we
1586 return a string identical to @string except that the 'f' prefix
1587 has been stripped and all double braces (i.e. '{{' or '}}') have
1588 been normalized (i.e. turned into '{' or '}').
1590 * Otherwise, we return @string.
1592 assert_is_leaf_string(string)
1594 if "f" in prefix and not fstring_contains_expr(string):
1595 new_prefix = prefix.replace("f", "")
1597 temp = string[len(prefix) :]
1598 temp = re.sub(r"\{\{", "{", temp)
1599 temp = re.sub(r"\}\}", "}", temp)
1602 return f"{new_prefix}{new_string}"
1606 def _get_string_operator_leaves(self, leaves: Iterable[Leaf]) -> List[Leaf]:
1609 string_op_leaves = []
1611 while LL[i].type in self.STRING_OPERATORS + [token.NAME]:
1612 prefix_leaf = Leaf(LL[i].type, str(LL[i]).strip())
1613 string_op_leaves.append(prefix_leaf)
1615 return string_op_leaves
1618 class StringParenWrapper(BaseStringSplitter, CustomSplitMapMixin):
1620 StringTransformer that wraps strings in parens and then splits at the LPAR.
1623 All of the requirements listed in BaseStringSplitter's docstring in
1624 addition to the requirements listed below:
1626 * The line is a return/yield statement, which returns/yields a string.
1628 * The line is part of a ternary expression (e.g. `x = y if cond else
1629 z`) such that the line starts with `else <string>`, where <string> is
1632 * The line is an assert statement, which ends with a string.
1634 * The line is an assignment statement (e.g. `x = <string>` or `x +=
1635 <string>`) such that the variable is being assigned the value of some
1638 * The line is a dictionary key assignment where some valid key is being
1639 assigned the value of some string.
1641 * The line is an lambda expression and the value is a string.
1643 * The line starts with an "atom" string that prefers to be wrapped in
1644 parens. It's preferred to be wrapped when the string is surrounded by
1645 commas (or is the first/last child).
1648 The chosen string is wrapped in parentheses and then split at the LPAR.
1650 We then have one line which ends with an LPAR and another line that
1651 starts with the chosen string. The latter line is then split again at
1652 the RPAR. This results in the RPAR (and possibly a trailing comma)
1653 being placed on its own line.
1655 NOTE: If any leaves exist to the right of the chosen string (except
1656 for a trailing comma, which would be placed after the RPAR), those
1657 leaves are placed inside the parentheses. In effect, the chosen
1658 string is not necessarily being "wrapped" by parentheses. We can,
1659 however, count on the LPAR being placed directly before the chosen
1662 In other words, StringParenWrapper creates "atom" strings. These
1663 can then be split again by StringSplitter, if necessary.
1666 In the event that a string line split by StringParenWrapper is
1667 changed such that it no longer needs to be given its own line,
1668 StringParenWrapper relies on StringParenStripper to clean up the
1669 parentheses it created.
1671 For "atom" strings that prefers to be wrapped in parens, it requires
1672 StringSplitter to hold the split until the string is wrapped in parens.
1675 def do_splitter_match(self, line: Line) -> TMatchResult:
1678 if line.leaves[-1].type in OPENING_BRACKETS:
1680 "Cannot wrap parens around a line that ends in an opening bracket."
1684 self._return_match(LL)
1685 or self._else_match(LL)
1686 or self._assert_match(LL)
1687 or self._assign_match(LL)
1688 or self._dict_or_lambda_match(LL)
1689 or self._prefer_paren_wrap_match(LL)
1692 if string_idx is not None:
1693 string_value = line.leaves[string_idx].value
1694 # If the string has no spaces...
1695 if " " not in string_value:
1696 # And will still violate the line length limit when split...
1697 max_string_length = self.line_length - ((line.depth + 1) * 4)
1698 if len(string_value) > max_string_length:
1699 # And has no associated custom splits...
1700 if not self.has_custom_splits(string_value):
1701 # Then we should NOT put this string on its own line.
1703 "We do not wrap long strings in parentheses when the"
1704 " resultant line would still be over the specified line"
1705 " length and can't be split further by StringSplitter."
1707 return Ok(string_idx)
1709 return TErr("This line does not contain any non-atomic strings.")
1712 def _return_match(LL: List[Leaf]) -> Optional[int]:
1715 string_idx such that @LL[string_idx] is equal to our target (i.e.
1716 matched) string, if this line matches the return/yield statement
1717 requirements listed in the 'Requirements' section of this classes'
1722 # If this line is apart of a return/yield statement and the first leaf
1723 # contains either the "return" or "yield" keywords...
1724 if parent_type(LL[0]) in [syms.return_stmt, syms.yield_expr] and LL[
1726 ].value in ["return", "yield"]:
1727 is_valid_index = is_valid_index_factory(LL)
1729 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1730 # The next visible leaf MUST contain a string...
1731 if is_valid_index(idx) and LL[idx].type == token.STRING:
1737 def _else_match(LL: List[Leaf]) -> Optional[int]:
1740 string_idx such that @LL[string_idx] is equal to our target (i.e.
1741 matched) string, if this line matches the ternary expression
1742 requirements listed in the 'Requirements' section of this classes'
1747 # If this line is apart of a ternary expression and the first leaf
1748 # contains the "else" keyword...
1750 parent_type(LL[0]) == syms.test
1751 and LL[0].type == token.NAME
1752 and LL[0].value == "else"
1754 is_valid_index = is_valid_index_factory(LL)
1756 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1757 # The next visible leaf MUST contain a string...
1758 if is_valid_index(idx) and LL[idx].type == token.STRING:
1764 def _assert_match(LL: List[Leaf]) -> Optional[int]:
1767 string_idx such that @LL[string_idx] is equal to our target (i.e.
1768 matched) string, if this line matches the assert statement
1769 requirements listed in the 'Requirements' section of this classes'
1774 # If this line is apart of an assert statement and the first leaf
1775 # contains the "assert" keyword...
1776 if parent_type(LL[0]) == syms.assert_stmt and LL[0].value == "assert":
1777 is_valid_index = is_valid_index_factory(LL)
1779 for i, leaf in enumerate(LL):
1780 # We MUST find a comma...
1781 if leaf.type == token.COMMA:
1782 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1784 # That comma MUST be followed by a string...
1785 if is_valid_index(idx) and LL[idx].type == token.STRING:
1788 # Skip the string trailer, if one exists.
1789 string_parser = StringParser()
1790 idx = string_parser.parse(LL, string_idx)
1792 # But no more leaves are allowed...
1793 if not is_valid_index(idx):
1799 def _assign_match(LL: List[Leaf]) -> Optional[int]:
1802 string_idx such that @LL[string_idx] is equal to our target (i.e.
1803 matched) string, if this line matches the assignment statement
1804 requirements listed in the 'Requirements' section of this classes'
1809 # If this line is apart of an expression statement or is a function
1810 # argument AND the first leaf contains a variable name...
1812 parent_type(LL[0]) in [syms.expr_stmt, syms.argument, syms.power]
1813 and LL[0].type == token.NAME
1815 is_valid_index = is_valid_index_factory(LL)
1817 for i, leaf in enumerate(LL):
1818 # We MUST find either an '=' or '+=' symbol...
1819 if leaf.type in [token.EQUAL, token.PLUSEQUAL]:
1820 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1822 # That symbol MUST be followed by a string...
1823 if is_valid_index(idx) and LL[idx].type == token.STRING:
1826 # Skip the string trailer, if one exists.
1827 string_parser = StringParser()
1828 idx = string_parser.parse(LL, string_idx)
1830 # The next leaf MAY be a comma iff this line is apart
1831 # of a function argument...
1833 parent_type(LL[0]) == syms.argument
1834 and is_valid_index(idx)
1835 and LL[idx].type == token.COMMA
1839 # But no more leaves are allowed...
1840 if not is_valid_index(idx):
1846 def _dict_or_lambda_match(LL: List[Leaf]) -> Optional[int]:
1849 string_idx such that @LL[string_idx] is equal to our target (i.e.
1850 matched) string, if this line matches the dictionary key assignment
1851 statement or lambda expression requirements listed in the
1852 'Requirements' section of this classes' docstring.
1856 # If this line is a part of a dictionary key assignment or lambda expression...
1857 parent_types = [parent_type(LL[0]), parent_type(LL[0].parent)]
1858 if syms.dictsetmaker in parent_types or syms.lambdef in parent_types:
1859 is_valid_index = is_valid_index_factory(LL)
1861 for i, leaf in enumerate(LL):
1862 # We MUST find a colon, it can either be dict's or lambda's colon...
1863 if leaf.type == token.COLON:
1864 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1866 # That colon MUST be followed by a string...
1867 if is_valid_index(idx) and LL[idx].type == token.STRING:
1870 # Skip the string trailer, if one exists.
1871 string_parser = StringParser()
1872 idx = string_parser.parse(LL, string_idx)
1874 # That string MAY be followed by a comma...
1875 if is_valid_index(idx) and LL[idx].type == token.COMMA:
1878 # But no more leaves are allowed...
1879 if not is_valid_index(idx):
1884 def do_transform(self, line: Line, string_idx: int) -> Iterator[TResult[Line]]:
1887 is_valid_index = is_valid_index_factory(LL)
1888 insert_str_child = insert_str_child_factory(LL[string_idx])
1891 ends_with_comma = False
1892 if LL[comma_idx].type == token.COMMA:
1893 ends_with_comma = True
1895 leaves_to_steal_comments_from = [LL[string_idx]]
1897 leaves_to_steal_comments_from.append(LL[comma_idx])
1900 first_line = line.clone()
1901 left_leaves = LL[:string_idx]
1903 # We have to remember to account for (possibly invisible) LPAR and RPAR
1904 # leaves that already wrapped the target string. If these leaves do
1905 # exist, we will replace them with our own LPAR and RPAR leaves.
1906 old_parens_exist = False
1907 if left_leaves and left_leaves[-1].type == token.LPAR:
1908 old_parens_exist = True
1909 leaves_to_steal_comments_from.append(left_leaves[-1])
1912 append_leaves(first_line, line, left_leaves)
1914 lpar_leaf = Leaf(token.LPAR, "(")
1915 if old_parens_exist:
1916 replace_child(LL[string_idx - 1], lpar_leaf)
1918 insert_str_child(lpar_leaf)
1919 first_line.append(lpar_leaf)
1921 # We throw inline comments that were originally to the right of the
1922 # target string to the top line. They will now be shown to the right of
1924 for leaf in leaves_to_steal_comments_from:
1925 for comment_leaf in line.comments_after(leaf):
1926 first_line.append(comment_leaf, preformatted=True)
1928 yield Ok(first_line)
1930 # --- Middle (String) Line
1931 # We only need to yield one (possibly too long) string line, since the
1932 # `StringSplitter` will break it down further if necessary.
1933 string_value = LL[string_idx].value
1936 depth=line.depth + 1,
1937 inside_brackets=True,
1938 should_split_rhs=line.should_split_rhs,
1939 magic_trailing_comma=line.magic_trailing_comma,
1941 string_leaf = Leaf(token.STRING, string_value)
1942 insert_str_child(string_leaf)
1943 string_line.append(string_leaf)
1945 old_rpar_leaf = None
1946 if is_valid_index(string_idx + 1):
1947 right_leaves = LL[string_idx + 1 :]
1951 if old_parens_exist:
1952 assert right_leaves and right_leaves[-1].type == token.RPAR, (
1953 "Apparently, old parentheses do NOT exist?!"
1954 f" (left_leaves={left_leaves}, right_leaves={right_leaves})"
1956 old_rpar_leaf = right_leaves.pop()
1957 elif right_leaves and right_leaves[-1].type == token.RPAR:
1958 # Special case for lambda expressions as dict's value, e.g.:
1960 # "key": lambda x: f"formatted: {x},
1962 # After wrapping the dict's value with parentheses, the string is
1963 # followed by a RPAR but its opening bracket is lambda's, not
1965 # "key": (lambda x: f"formatted: {x}),
1966 opening_bracket = right_leaves[-1].opening_bracket
1967 if opening_bracket is not None and opening_bracket in left_leaves:
1968 index = left_leaves.index(opening_bracket)
1971 and index < len(left_leaves) - 1
1972 and left_leaves[index - 1].type == token.COLON
1973 and left_leaves[index + 1].value == "lambda"
1977 append_leaves(string_line, line, right_leaves)
1979 yield Ok(string_line)
1982 last_line = line.clone()
1983 last_line.bracket_tracker = first_line.bracket_tracker
1985 new_rpar_leaf = Leaf(token.RPAR, ")")
1986 if old_rpar_leaf is not None:
1987 replace_child(old_rpar_leaf, new_rpar_leaf)
1989 insert_str_child(new_rpar_leaf)
1990 last_line.append(new_rpar_leaf)
1992 # If the target string ended with a comma, we place this comma to the
1993 # right of the RPAR on the last line.
1995 comma_leaf = Leaf(token.COMMA, ",")
1996 replace_child(LL[comma_idx], comma_leaf)
1997 last_line.append(comma_leaf)
2004 A state machine that aids in parsing a string's "trailer", which can be
2005 either non-existent, an old-style formatting sequence (e.g. `% varX` or `%
2006 (varX, varY)`), or a method-call / attribute access (e.g. `.format(varX,
2009 NOTE: A new StringParser object MUST be instantiated for each string
2010 trailer we need to parse.
2013 We shall assume that `line` equals the `Line` object that corresponds
2014 to the following line of python code:
2016 x = "Some {}.".format("String") + some_other_string
2019 Furthermore, we will assume that `string_idx` is some index such that:
2021 assert line.leaves[string_idx].value == "Some {}."
2024 The following code snippet then holds:
2026 string_parser = StringParser()
2027 idx = string_parser.parse(line.leaves, string_idx)
2028 assert line.leaves[idx].type == token.PLUS
2032 DEFAULT_TOKEN: Final = 20210605
2034 # String Parser States
2039 SINGLE_FMT_ARG: Final = 5
2044 # Lookup Table for Next State
2045 _goto: Final[Dict[Tuple[ParserState, NodeType], ParserState]] = {
2046 # A string trailer may start with '.' OR '%'.
2047 (START, token.DOT): DOT,
2048 (START, token.PERCENT): PERCENT,
2049 (START, DEFAULT_TOKEN): DONE,
2050 # A '.' MUST be followed by an attribute or method name.
2051 (DOT, token.NAME): NAME,
2052 # A method name MUST be followed by an '(', whereas an attribute name
2053 # is the last symbol in the string trailer.
2054 (NAME, token.LPAR): LPAR,
2055 (NAME, DEFAULT_TOKEN): DONE,
2056 # A '%' symbol can be followed by an '(' or a single argument (e.g. a
2057 # string or variable name).
2058 (PERCENT, token.LPAR): LPAR,
2059 (PERCENT, DEFAULT_TOKEN): SINGLE_FMT_ARG,
2060 # If a '%' symbol is followed by a single argument, that argument is
2061 # the last leaf in the string trailer.
2062 (SINGLE_FMT_ARG, DEFAULT_TOKEN): DONE,
2063 # If present, a ')' symbol is the last symbol in a string trailer.
2064 # (NOTE: LPARS and nested RPARS are not included in this lookup table,
2065 # since they are treated as a special case by the parsing logic in this
2066 # classes' implementation.)
2067 (RPAR, DEFAULT_TOKEN): DONE,
2070 def __init__(self) -> None:
2071 self._state = self.START
2072 self._unmatched_lpars = 0
2074 def parse(self, leaves: List[Leaf], string_idx: int) -> int:
2077 * @leaves[@string_idx].type == token.STRING
2080 The index directly after the last leaf which is apart of the string
2081 trailer, if a "trailer" exists.
2083 @string_idx + 1, if no string "trailer" exists.
2085 assert leaves[string_idx].type == token.STRING
2087 idx = string_idx + 1
2088 while idx < len(leaves) and self._next_state(leaves[idx]):
2092 def _next_state(self, leaf: Leaf) -> bool:
2095 * On the first call to this function, @leaf MUST be the leaf that
2096 was directly after the string leaf in question (e.g. if our target
2097 string is `line.leaves[i]` then the first call to this method must
2098 be `line.leaves[i + 1]`).
2099 * On the next call to this function, the leaf parameter passed in
2100 MUST be the leaf directly following @leaf.
2103 True iff @leaf is apart of the string's trailer.
2105 # We ignore empty LPAR or RPAR leaves.
2106 if is_empty_par(leaf):
2109 next_token = leaf.type
2110 if next_token == token.LPAR:
2111 self._unmatched_lpars += 1
2113 current_state = self._state
2115 # The LPAR parser state is a special case. We will return True until we
2116 # find the matching RPAR token.
2117 if current_state == self.LPAR:
2118 if next_token == token.RPAR:
2119 self._unmatched_lpars -= 1
2120 if self._unmatched_lpars == 0:
2121 self._state = self.RPAR
2122 # Otherwise, we use a lookup table to determine the next state.
2124 # If the lookup table matches the current state to the next
2125 # token, we use the lookup table.
2126 if (current_state, next_token) in self._goto:
2127 self._state = self._goto[current_state, next_token]
2129 # Otherwise, we check if a the current state was assigned a
2131 if (current_state, self.DEFAULT_TOKEN) in self._goto:
2132 self._state = self._goto[current_state, self.DEFAULT_TOKEN]
2133 # If no default has been assigned, then this parser has a logic
2136 raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
2138 if self._state == self.DONE:
2144 def insert_str_child_factory(string_leaf: Leaf) -> Callable[[LN], None]:
2146 Factory for a convenience function that is used to orphan @string_leaf
2147 and then insert multiple new leaves into the same part of the node
2148 structure that @string_leaf had originally occupied.
2151 Let `string_leaf = Leaf(token.STRING, '"foo"')` and `N =
2152 string_leaf.parent`. Assume the node `N` has the following
2159 Leaf(STRING, '"foo"'),
2163 We then run the code snippet shown below.
2165 insert_str_child = insert_str_child_factory(string_leaf)
2167 lpar = Leaf(token.LPAR, '(')
2168 insert_str_child(lpar)
2170 bar = Leaf(token.STRING, '"bar"')
2171 insert_str_child(bar)
2173 rpar = Leaf(token.RPAR, ')')
2174 insert_str_child(rpar)
2177 After which point, it follows that `string_leaf.parent is None` and
2178 the node `N` now has the following structure:
2185 Leaf(STRING, '"bar"'),
2190 string_parent = string_leaf.parent
2191 string_child_idx = string_leaf.remove()
2193 def insert_str_child(child: LN) -> None:
2194 nonlocal string_child_idx
2196 assert string_parent is not None
2197 assert string_child_idx is not None
2199 string_parent.insert_child(string_child_idx, child)
2200 string_child_idx += 1
2202 return insert_str_child
2205 def is_valid_index_factory(seq: Sequence[Any]) -> Callable[[int], bool]:
2211 is_valid_index = is_valid_index_factory(my_list)
2213 assert is_valid_index(0)
2214 assert is_valid_index(2)
2216 assert not is_valid_index(3)
2217 assert not is_valid_index(-1)
2221 def is_valid_index(idx: int) -> bool:
2224 True iff @idx is positive AND seq[@idx] does NOT raise an
2227 return 0 <= idx < len(seq)
2229 return is_valid_index