All patches and comments are welcome. Please squash your changes to logical
commits before using git-format-patch and git-send-email to
patches@git.madduck.net.
If you'd read over the Git project's submission guidelines and adhered to them,
I'd be especially grateful.
2 String transformers that can split and merge strings.
6 from abc import ABC, abstractmethod
7 from collections import defaultdict
8 from dataclasses import dataclass
26 if sys.version_info < (3, 8):
27 from typing_extensions import Final, Literal
29 from typing import Literal, Final
31 from mypy_extensions import trait
33 from black.comments import contains_pragma_comment
34 from black.lines import Line, append_leaves
35 from black.mode import Feature
36 from black.nodes import (
43 is_part_of_annotation,
48 from black.rusty import Err, Ok, Result
49 from black.strings import (
50 assert_is_leaf_string,
53 normalize_string_quotes,
55 from blib2to3.pgen2 import token
56 from blib2to3.pytree import Leaf, Node
59 class CannotTransform(Exception):
60 """Base class for errors raised by Transformers."""
65 LN = Union[Leaf, Node]
66 Transformer = Callable[[Line, Collection[Feature]], Iterator[Line]]
71 TResult = Result[T, CannotTransform] # (T)ransform Result
72 TMatchResult = TResult[List[Index]]
75 def TErr(err_msg: str) -> Err[CannotTransform]:
78 Convenience function used when working with the TResult type.
80 cant_transform = CannotTransform(err_msg)
81 return Err(cant_transform)
84 def hug_power_op(line: Line, features: Collection[Feature]) -> Iterator[Line]:
85 """A transformer which normalizes spacing around power operators."""
87 # Performance optimization to avoid unnecessary Leaf clones and other ops.
88 for leaf in line.leaves:
89 if leaf.type == token.DOUBLESTAR:
92 raise CannotTransform("No doublestar token was found in the line.")
94 def is_simple_lookup(index: int, step: Literal[1, -1]) -> bool:
95 # Brackets and parentheses indicate calls, subscripts, etc. ...
96 # basically stuff that doesn't count as "simple". Only a NAME lookup
97 # or dotted lookup (eg. NAME.NAME) is OK.
99 disallowed = {token.RPAR, token.RSQB}
101 disallowed = {token.LPAR, token.LSQB}
103 while 0 <= index < len(line.leaves):
104 current = line.leaves[index]
105 if current.type in disallowed:
107 if current.type not in {token.NAME, token.DOT} or current.value == "for":
108 # If the current token isn't disallowed, we'll assume this is simple as
109 # only the disallowed tokens are semantically attached to this lookup
110 # expression we're checking. Also, stop early if we hit the 'for' bit
111 # of a comprehension.
118 def is_simple_operand(index: int, kind: Literal["base", "exponent"]) -> bool:
119 # An operand is considered "simple" if's a NAME, a numeric CONSTANT, a simple
120 # lookup (see above), with or without a preceding unary operator.
121 start = line.leaves[index]
122 if start.type in {token.NAME, token.NUMBER}:
123 return is_simple_lookup(index, step=(1 if kind == "exponent" else -1))
125 if start.type in {token.PLUS, token.MINUS, token.TILDE}:
126 if line.leaves[index + 1].type in {token.NAME, token.NUMBER}:
127 # step is always one as bases with a preceding unary op will be checked
128 # for simplicity starting from the next token (so it'll hit the check
130 return is_simple_lookup(index + 1, step=1)
134 new_line = line.clone()
136 for idx, leaf in enumerate(line.leaves):
137 new_leaf = leaf.clone()
143 (0 < idx < len(line.leaves) - 1)
144 and leaf.type == token.DOUBLESTAR
145 and is_simple_operand(idx - 1, kind="base")
146 and line.leaves[idx - 1].value != "lambda"
147 and is_simple_operand(idx + 1, kind="exponent")
152 # We have to be careful to make a new line properly:
153 # - bracket related metadata must be maintained (handled by Line.append)
154 # - comments need to copied over, updating the leaf IDs they're attached to
155 new_line.append(new_leaf, preformatted=True)
156 for comment_leaf in line.comments_after(leaf):
157 new_line.append(comment_leaf, preformatted=True)
162 class StringTransformer(ABC):
164 An implementation of the Transformer protocol that relies on its
165 subclasses overriding the template methods `do_match(...)` and
168 This Transformer works exclusively on strings (for example, by merging
171 The following sections can be found among the docstrings of each concrete
172 StringTransformer subclass.
175 Which requirements must be met of the given Line for this
176 StringTransformer to be applied?
179 If the given Line meets all of the above requirements, which string
180 transformations can you expect to be applied to it by this
184 What contractual agreements does this StringTransformer have with other
185 StringTransfomers? Such collaborations should be eliminated/minimized
189 __name__: Final = "StringTransformer"
191 # Ideally this would be a dataclass, but unfortunately mypyc breaks when used with
193 def __init__(self, line_length: int, normalize_strings: bool) -> None:
194 self.line_length = line_length
195 self.normalize_strings = normalize_strings
198 def do_match(self, line: Line) -> TMatchResult:
201 * Ok(string_indices) such that for each index, `line.leaves[index]`
202 is our target string if a match was able to be made. For
203 transformers that don't result in more lines (e.g. StringMerger,
204 StringParenStripper), multiple matches and transforms are done at
205 once to reduce the complexity.
207 * Err(CannotTransform), if no match could be made.
212 self, line: Line, string_indices: List[int]
213 ) -> Iterator[TResult[Line]]:
216 * Ok(new_line) where new_line is the new transformed line.
218 * Err(CannotTransform) if the transformation failed for some reason. The
219 `do_match(...)` template method should usually be used to reject
220 the form of the given Line, but in some cases it is difficult to
221 know whether or not a Line meets the StringTransformer's
222 requirements until the transformation is already midway.
225 This method should NOT mutate @line directly, but it MAY mutate the
226 Line's underlying Node structure. (WARNING: If the underlying Node
227 structure IS altered, then this method should NOT be allowed to
228 yield an CannotTransform after that point.)
231 def __call__(self, line: Line, _features: Collection[Feature]) -> Iterator[Line]:
233 StringTransformer instances have a call signature that mirrors that of
234 the Transformer type.
237 CannotTransform(...) if the concrete StringTransformer class is unable
240 # Optimization to avoid calling `self.do_match(...)` when the line does
241 # not contain any string.
242 if not any(leaf.type == token.STRING for leaf in line.leaves):
243 raise CannotTransform("There are no strings in this line.")
245 match_result = self.do_match(line)
247 if isinstance(match_result, Err):
248 cant_transform = match_result.err()
249 raise CannotTransform(
250 f"The string transformer {self.__class__.__name__} does not recognize"
251 " this line as one that it can transform."
252 ) from cant_transform
254 string_indices = match_result.ok()
256 for line_result in self.do_transform(line, string_indices):
257 if isinstance(line_result, Err):
258 cant_transform = line_result.err()
259 raise CannotTransform(
260 "StringTransformer failed while attempting to transform string."
261 ) from cant_transform
262 line = line_result.ok()
268 """A custom (i.e. manual) string split.
270 A single CustomSplit instance represents a single substring.
273 Consider the following string:
280 This string will correspond to the following three CustomSplit instances:
282 CustomSplit(False, 16)
283 CustomSplit(False, 17)
284 CustomSplit(True, 16)
293 class CustomSplitMapMixin:
295 This mixin class is used to map merged strings to a sequence of
296 CustomSplits, which will then be used to re-split the strings iff none of
297 the resultant substrings go over the configured max line length.
300 _Key: ClassVar = Tuple[StringID, str]
301 _CUSTOM_SPLIT_MAP: ClassVar[Dict[_Key, Tuple[CustomSplit, ...]]] = defaultdict(
306 def _get_key(string: str) -> "CustomSplitMapMixin._Key":
309 A unique identifier that is used internally to map @string to a
310 group of custom splits.
312 return (id(string), string)
314 def add_custom_splits(
315 self, string: str, custom_splits: Iterable[CustomSplit]
317 """Custom Split Map Setter Method
320 Adds a mapping from @string to the custom splits @custom_splits.
322 key = self._get_key(string)
323 self._CUSTOM_SPLIT_MAP[key] = tuple(custom_splits)
325 def pop_custom_splits(self, string: str) -> List[CustomSplit]:
326 """Custom Split Map Getter Method
329 * A list of the custom splits that are mapped to @string, if any
335 Deletes the mapping between @string and its associated custom
336 splits (which are returned to the caller).
338 key = self._get_key(string)
340 custom_splits = self._CUSTOM_SPLIT_MAP[key]
341 del self._CUSTOM_SPLIT_MAP[key]
343 return list(custom_splits)
345 def has_custom_splits(self, string: str) -> bool:
348 True iff @string is associated with a set of custom splits.
350 key = self._get_key(string)
351 return key in self._CUSTOM_SPLIT_MAP
354 class StringMerger(StringTransformer, CustomSplitMapMixin):
355 """StringTransformer that merges strings together.
358 (A) The line contains adjacent strings such that ALL of the validation checks
359 listed in StringMerger._validate_msg(...)'s docstring pass.
361 (B) The line contains a string which uses line continuation backslashes.
364 Depending on which of the two requirements above where met, either:
366 (A) The string group associated with the target string is merged.
368 (B) All line-continuation backslashes are removed from the target string.
371 StringMerger provides custom split information to StringSplitter.
374 def do_match(self, line: Line) -> TMatchResult:
377 is_valid_index = is_valid_index_factory(LL)
381 while is_valid_index(idx):
384 leaf.type == token.STRING
385 and is_valid_index(idx + 1)
386 and LL[idx + 1].type == token.STRING
388 if not is_part_of_annotation(leaf):
389 string_indices.append(idx)
391 # Advance to the next non-STRING leaf.
393 while is_valid_index(idx) and LL[idx].type == token.STRING:
396 elif leaf.type == token.STRING and "\\\n" in leaf.value:
397 string_indices.append(idx)
398 # Advance to the next non-STRING leaf.
400 while is_valid_index(idx) and LL[idx].type == token.STRING:
407 return Ok(string_indices)
409 return TErr("This line has no strings that need merging.")
412 self, line: Line, string_indices: List[int]
413 ) -> Iterator[TResult[Line]]:
416 rblc_result = self._remove_backslash_line_continuation_chars(
417 new_line, string_indices
419 if isinstance(rblc_result, Ok):
420 new_line = rblc_result.ok()
422 msg_result = self._merge_string_group(new_line, string_indices)
423 if isinstance(msg_result, Ok):
424 new_line = msg_result.ok()
426 if isinstance(rblc_result, Err) and isinstance(msg_result, Err):
427 msg_cant_transform = msg_result.err()
428 rblc_cant_transform = rblc_result.err()
429 cant_transform = CannotTransform(
430 "StringMerger failed to merge any strings in this line."
433 # Chain the errors together using `__cause__`.
434 msg_cant_transform.__cause__ = rblc_cant_transform
435 cant_transform.__cause__ = msg_cant_transform
437 yield Err(cant_transform)
442 def _remove_backslash_line_continuation_chars(
443 line: Line, string_indices: List[int]
446 Merge strings that were split across multiple lines using
447 line-continuation backslashes.
450 Ok(new_line), if @line contains backslash line-continuation
453 Err(CannotTransform), otherwise.
457 indices_to_transform = []
458 for string_idx in string_indices:
459 string_leaf = LL[string_idx]
461 string_leaf.type == token.STRING
462 and "\\\n" in string_leaf.value
463 and not has_triple_quotes(string_leaf.value)
465 indices_to_transform.append(string_idx)
467 if not indices_to_transform:
469 "Found no string leaves that contain backslash line continuation"
473 new_line = line.clone()
474 new_line.comments = line.comments.copy()
475 append_leaves(new_line, line, LL)
477 for string_idx in indices_to_transform:
478 new_string_leaf = new_line.leaves[string_idx]
479 new_string_leaf.value = new_string_leaf.value.replace("\\\n", "")
483 def _merge_string_group(
484 self, line: Line, string_indices: List[int]
487 Merges string groups (i.e. set of adjacent strings).
489 Each index from `string_indices` designates one string group's first
490 leaf in `line.leaves`.
493 Ok(new_line), if ALL of the validation checks found in
494 _validate_msg(...) pass.
496 Err(CannotTransform), otherwise.
500 is_valid_index = is_valid_index_factory(LL)
502 # A dict of {string_idx: tuple[num_of_strings, string_leaf]}.
503 merged_string_idx_dict: Dict[int, Tuple[int, Leaf]] = {}
504 for string_idx in string_indices:
505 vresult = self._validate_msg(line, string_idx)
506 if isinstance(vresult, Err):
508 merged_string_idx_dict[string_idx] = self._merge_one_string_group(
509 LL, string_idx, is_valid_index
512 if not merged_string_idx_dict:
513 return TErr("No string group is merged")
515 # Build the final line ('new_line') that this method will later return.
516 new_line = line.clone()
517 previous_merged_string_idx = -1
518 previous_merged_num_of_strings = -1
519 for i, leaf in enumerate(LL):
520 if i in merged_string_idx_dict:
521 previous_merged_string_idx = i
522 previous_merged_num_of_strings, string_leaf = merged_string_idx_dict[i]
523 new_line.append(string_leaf)
526 previous_merged_string_idx
528 < previous_merged_string_idx + previous_merged_num_of_strings
530 for comment_leaf in line.comments_after(LL[i]):
531 new_line.append(comment_leaf, preformatted=True)
534 append_leaves(new_line, line, [leaf])
538 def _merge_one_string_group(
539 self, LL: List[Leaf], string_idx: int, is_valid_index: Callable[[int], bool]
540 ) -> Tuple[int, Leaf]:
542 Merges one string group where the first string in the group is
546 A tuple of `(num_of_strings, leaf)` where `num_of_strings` is the
547 number of strings merged and `leaf` is the newly merged string
548 to be replaced in the new line.
550 # If the string group is wrapped inside an Atom node, we must make sure
551 # to later replace that Atom with our new (merged) string leaf.
552 atom_node = LL[string_idx].parent
554 # We will place BREAK_MARK in between every two substrings that we
555 # merge. We will then later go through our final result and use the
556 # various instances of BREAK_MARK we find to add the right values to
557 # the custom split map.
558 BREAK_MARK = "@@@@@ BLACK BREAKPOINT MARKER @@@@@"
560 QUOTE = LL[string_idx].value[-1]
562 def make_naked(string: str, string_prefix: str) -> str:
563 """Strip @string (i.e. make it a "naked" string)
566 * assert_is_leaf_string(@string)
569 A string that is identical to @string except that
570 @string_prefix has been stripped, the surrounding QUOTE
571 characters have been removed, and any remaining QUOTE
572 characters have been escaped.
574 assert_is_leaf_string(string)
575 if "f" in string_prefix:
576 string = _toggle_fexpr_quotes(string, QUOTE)
577 # After quotes toggling, quotes in expressions won't be escaped
578 # because quotes can't be reused in f-strings. So we can simply
579 # let the escaping logic below run without knowing f-string
582 RE_EVEN_BACKSLASHES = r"(?:(?<!\\)(?:\\\\)*)"
583 naked_string = string[len(string_prefix) + 1 : -1]
584 naked_string = re.sub(
585 "(" + RE_EVEN_BACKSLASHES + ")" + QUOTE, r"\1\\" + QUOTE, naked_string
589 # Holds the CustomSplit objects that will later be added to the custom
593 # Temporary storage for the 'has_prefix' part of the CustomSplit objects.
596 # Sets the 'prefix' variable. This is the prefix that the final merged
598 next_str_idx = string_idx
602 and is_valid_index(next_str_idx)
603 and LL[next_str_idx].type == token.STRING
605 prefix = get_string_prefix(LL[next_str_idx].value).lower()
608 # The next loop merges the string group. The final string will be
611 # The following convenience variables are used:
616 # NSS: naked next string
620 next_str_idx = string_idx
621 while is_valid_index(next_str_idx) and LL[next_str_idx].type == token.STRING:
624 SS = LL[next_str_idx].value
625 next_prefix = get_string_prefix(SS).lower()
627 # If this is an f-string group but this substring is not prefixed
629 if "f" in prefix and "f" not in next_prefix:
630 # Then we must escape any braces contained in this substring.
631 SS = re.sub(r"(\{|\})", r"\1\1", SS)
633 NSS = make_naked(SS, next_prefix)
635 has_prefix = bool(next_prefix)
636 prefix_tracker.append(has_prefix)
638 S = prefix + QUOTE + NS + NSS + BREAK_MARK + QUOTE
639 NS = make_naked(S, prefix)
643 # Take a note on the index of the non-STRING leaf.
644 non_string_idx = next_str_idx
646 S_leaf = Leaf(token.STRING, S)
647 if self.normalize_strings:
648 S_leaf.value = normalize_string_quotes(S_leaf.value)
650 # Fill the 'custom_splits' list with the appropriate CustomSplit objects.
651 temp_string = S_leaf.value[len(prefix) + 1 : -1]
652 for has_prefix in prefix_tracker:
653 mark_idx = temp_string.find(BREAK_MARK)
656 ), "Logic error while filling the custom string breakpoint cache."
658 temp_string = temp_string[mark_idx + len(BREAK_MARK) :]
659 breakpoint_idx = mark_idx + (len(prefix) if has_prefix else 0) + 1
660 custom_splits.append(CustomSplit(has_prefix, breakpoint_idx))
662 string_leaf = Leaf(token.STRING, S_leaf.value.replace(BREAK_MARK, ""))
664 if atom_node is not None:
665 # If not all children of the atom node are merged (this can happen
666 # when there is a standalone comment in the middle) ...
667 if non_string_idx - string_idx < len(atom_node.children):
668 # We need to replace the old STRING leaves with the new string leaf.
669 first_child_idx = LL[string_idx].remove()
670 for idx in range(string_idx + 1, non_string_idx):
672 if first_child_idx is not None:
673 atom_node.insert_child(first_child_idx, string_leaf)
675 # Else replace the atom node with the new string leaf.
676 replace_child(atom_node, string_leaf)
678 self.add_custom_splits(string_leaf.value, custom_splits)
679 return num_of_strings, string_leaf
682 def _validate_msg(line: Line, string_idx: int) -> TResult[None]:
683 """Validate (M)erge (S)tring (G)roup
685 Transform-time string validation logic for _merge_string_group(...).
688 * Ok(None), if ALL validation checks (listed below) pass.
690 * Err(CannotTransform), if any of the following are true:
691 - The target string group does not contain ANY stand-alone comments.
692 - The target string is not in a string group (i.e. it has no
694 - The string group has more than one inline comment.
695 - The string group has an inline comment that appears to be a pragma.
696 - The set of all string prefixes in the string group is of
697 length greater than one and is not equal to {"", "f"}.
698 - The string group consists of raw strings.
699 - The string group is stringified type annotations. We don't want to
700 process stringified type annotations since pyright doesn't support
701 them spanning multiple string values. (NOTE: mypy, pytype, pyre do
702 support them, so we can change if pyright also gains support in the
703 future. See https://github.com/microsoft/pyright/issues/4359.)
705 # We first check for "inner" stand-alone comments (i.e. stand-alone
706 # comments that have a string leaf before them AND after them).
709 found_sa_comment = False
710 is_valid_index = is_valid_index_factory(line.leaves)
711 while is_valid_index(i) and line.leaves[i].type in [
715 if line.leaves[i].type == STANDALONE_COMMENT:
716 found_sa_comment = True
717 elif found_sa_comment:
719 "StringMerger does NOT merge string groups which contain "
720 "stand-alone comments."
725 num_of_inline_string_comments = 0
726 set_of_prefixes = set()
728 for leaf in line.leaves[string_idx:]:
729 if leaf.type != token.STRING:
730 # If the string group is trailed by a comma, we count the
731 # comments trailing the comma to be one of the string group's
733 if leaf.type == token.COMMA and id(leaf) in line.comments:
734 num_of_inline_string_comments += 1
737 if has_triple_quotes(leaf.value):
738 return TErr("StringMerger does NOT merge multiline strings.")
741 prefix = get_string_prefix(leaf.value).lower()
743 return TErr("StringMerger does NOT merge raw strings.")
745 set_of_prefixes.add(prefix)
747 if id(leaf) in line.comments:
748 num_of_inline_string_comments += 1
749 if contains_pragma_comment(line.comments[id(leaf)]):
750 return TErr("Cannot merge strings which have pragma comments.")
752 if num_of_strings < 2:
754 f"Not enough strings to merge (num_of_strings={num_of_strings})."
757 if num_of_inline_string_comments > 1:
759 f"Too many inline string comments ({num_of_inline_string_comments})."
762 if len(set_of_prefixes) > 1 and set_of_prefixes != {"", "f"}:
763 return TErr(f"Too many different prefixes ({set_of_prefixes}).")
768 class StringParenStripper(StringTransformer):
769 """StringTransformer that strips surrounding parentheses from strings.
772 The line contains a string which is surrounded by parentheses and:
773 - The target string is NOT the only argument to a function call.
774 - The target string is NOT a "pointless" string.
775 - If the target string contains a PERCENT, the brackets are not
776 preceded or followed by an operator with higher precedence than
780 The parentheses mentioned in the 'Requirements' section are stripped.
783 StringParenStripper has its own inherent usefulness, but it is also
784 relied on to clean up the parentheses created by StringParenWrapper (in
785 the event that they are no longer needed).
788 def do_match(self, line: Line) -> TMatchResult:
791 is_valid_index = is_valid_index_factory(LL)
802 # Should be a string...
803 if leaf.type != token.STRING:
806 # If this is a "pointless" string...
809 and leaf.parent.parent
810 and leaf.parent.parent.type == syms.simple_stmt
814 # Should be preceded by a non-empty LPAR...
816 not is_valid_index(idx - 1)
817 or LL[idx - 1].type != token.LPAR
818 or is_empty_lpar(LL[idx - 1])
822 # That LPAR should NOT be preceded by a function name or a closing
823 # bracket (which could be a function which returns a function or a
824 # list/dictionary that contains a function)...
825 if is_valid_index(idx - 2) and (
826 LL[idx - 2].type == token.NAME or LL[idx - 2].type in CLOSING_BRACKETS
832 # Skip the string trailer, if one exists.
833 string_parser = StringParser()
834 next_idx = string_parser.parse(LL, string_idx)
836 # if the leaves in the parsed string include a PERCENT, we need to
837 # make sure the initial LPAR is NOT preceded by an operator with
838 # higher or equal precedence to PERCENT
839 if is_valid_index(idx - 2):
840 # mypy can't quite follow unless we name this
841 before_lpar = LL[idx - 2]
842 if token.PERCENT in {leaf.type for leaf in LL[idx - 1 : next_idx]} and (
859 # only unary PLUS/MINUS
861 and before_lpar.parent.type == syms.factor
862 and (before_lpar.type in {token.PLUS, token.MINUS})
867 # Should be followed by a non-empty RPAR...
869 is_valid_index(next_idx)
870 and LL[next_idx].type == token.RPAR
871 and not is_empty_rpar(LL[next_idx])
873 # That RPAR should NOT be followed by anything with higher
874 # precedence than PERCENT
875 if is_valid_index(next_idx + 1) and LL[next_idx + 1].type in {
883 string_indices.append(string_idx)
885 while idx < len(LL) - 1 and LL[idx + 1].type == token.STRING:
889 return Ok(string_indices)
890 return TErr("This line has no strings wrapped in parens.")
893 self, line: Line, string_indices: List[int]
894 ) -> Iterator[TResult[Line]]:
897 string_and_rpar_indices: List[int] = []
898 for string_idx in string_indices:
899 string_parser = StringParser()
900 rpar_idx = string_parser.parse(LL, string_idx)
902 should_transform = True
903 for leaf in (LL[string_idx - 1], LL[rpar_idx]):
904 if line.comments_after(leaf):
905 # Should not strip parentheses which have comments attached
907 should_transform = False
910 string_and_rpar_indices.extend((string_idx, rpar_idx))
912 if string_and_rpar_indices:
913 yield Ok(self._transform_to_new_line(line, string_and_rpar_indices))
916 CannotTransform("All string groups have comments attached to them.")
919 def _transform_to_new_line(
920 self, line: Line, string_and_rpar_indices: List[int]
924 new_line = line.clone()
925 new_line.comments = line.comments.copy()
928 # We need to sort the indices, since string_idx and its matching
929 # rpar_idx may not come in order, e.g. in
930 # `("outer" % ("inner".join(items)))`, the "inner" string's
931 # string_idx is smaller than "outer" string's rpar_idx.
932 for idx in sorted(string_and_rpar_indices):
934 lpar_or_rpar_idx = idx - 1 if leaf.type == token.STRING else idx
935 append_leaves(new_line, line, LL[previous_idx + 1 : lpar_or_rpar_idx])
936 if leaf.type == token.STRING:
937 string_leaf = Leaf(token.STRING, LL[idx].value)
938 LL[lpar_or_rpar_idx].remove() # Remove lpar.
939 replace_child(LL[idx], string_leaf)
940 new_line.append(string_leaf)
942 LL[lpar_or_rpar_idx].remove() # This is a rpar.
946 # Append the leaves after the last idx:
947 append_leaves(new_line, line, LL[idx + 1 :])
952 class BaseStringSplitter(StringTransformer):
954 Abstract class for StringTransformers which transform a Line's strings by splitting
955 them or placing them on their own lines where necessary to avoid going over
956 the configured line length.
959 * The target string value is responsible for the line going over the
960 line length limit. It follows that after all of black's other line
961 split methods have been exhausted, this line (or one of the resulting
962 lines after all line splits are performed) would still be over the
963 line_length limit unless we split this string.
965 * The target string is NOT a "pointless" string (i.e. a string that has
966 no parent or siblings).
968 * The target string is not followed by an inline comment that appears
971 * The target string is not a multiline (i.e. triple-quote) string.
974 STRING_OPERATORS: Final = [
987 def do_splitter_match(self, line: Line) -> TMatchResult:
989 BaseStringSplitter asks its clients to override this method instead of
990 `StringTransformer.do_match(...)`.
992 Follows the same protocol as `StringTransformer.do_match(...)`.
994 Refer to `help(StringTransformer.do_match)` for more information.
997 def do_match(self, line: Line) -> TMatchResult:
998 match_result = self.do_splitter_match(line)
999 if isinstance(match_result, Err):
1002 string_indices = match_result.ok()
1003 assert len(string_indices) == 1, (
1004 f"{self.__class__.__name__} should only find one match at a time, found"
1005 f" {len(string_indices)}"
1007 string_idx = string_indices[0]
1008 vresult = self._validate(line, string_idx)
1009 if isinstance(vresult, Err):
1014 def _validate(self, line: Line, string_idx: int) -> TResult[None]:
1016 Checks that @line meets all of the requirements listed in this classes'
1017 docstring. Refer to `help(BaseStringSplitter)` for a detailed
1018 description of those requirements.
1021 * Ok(None), if ALL of the requirements are met.
1023 * Err(CannotTransform), if ANY of the requirements are NOT met.
1027 string_leaf = LL[string_idx]
1029 max_string_length = self._get_max_string_length(line, string_idx)
1030 if len(string_leaf.value) <= max_string_length:
1032 "The string itself is not what is causing this line to be too long."
1035 if not string_leaf.parent or [L.type for L in string_leaf.parent.children] == [
1040 f"This string ({string_leaf.value}) appears to be pointless (i.e. has"
1044 if id(line.leaves[string_idx]) in line.comments and contains_pragma_comment(
1045 line.comments[id(line.leaves[string_idx])]
1048 "Line appears to end with an inline pragma comment. Splitting the line"
1049 " could modify the pragma's behavior."
1052 if has_triple_quotes(string_leaf.value):
1053 return TErr("We cannot split multiline strings.")
1057 def _get_max_string_length(self, line: Line, string_idx: int) -> int:
1059 Calculates the max string length used when attempting to determine
1060 whether or not the target string is responsible for causing the line to
1061 go over the line length limit.
1063 WARNING: This method is tightly coupled to both StringSplitter and
1064 (especially) StringParenWrapper. There is probably a better way to
1065 accomplish what is being done here.
1068 max_string_length: such that `line.leaves[string_idx].value >
1069 max_string_length` implies that the target string IS responsible
1070 for causing this line to exceed the line length limit.
1074 is_valid_index = is_valid_index_factory(LL)
1076 # We use the shorthand "WMA4" in comments to abbreviate "We must
1077 # account for". When giving examples, we use STRING to mean some/any
1080 # Finally, we use the following convenience variables:
1082 # P: The leaf that is before the target string leaf.
1083 # N: The leaf that is after the target string leaf.
1084 # NN: The leaf that is after N.
1086 # WMA4 the whitespace at the beginning of the line.
1087 offset = line.depth * 4
1089 if is_valid_index(string_idx - 1):
1090 p_idx = string_idx - 1
1092 LL[string_idx - 1].type == token.LPAR
1093 and LL[string_idx - 1].value == ""
1096 # If the previous leaf is an empty LPAR placeholder, we should skip it.
1100 if P.type in self.STRING_OPERATORS:
1101 # WMA4 a space and a string operator (e.g. `+ STRING` or `== STRING`).
1102 offset += len(str(P)) + 1
1104 if P.type == token.COMMA:
1105 # WMA4 a space, a comma, and a closing bracket [e.g. `), STRING`].
1108 if P.type in [token.COLON, token.EQUAL, token.PLUSEQUAL, token.NAME]:
1109 # This conditional branch is meant to handle dictionary keys,
1110 # variable assignments, 'return STRING' statement lines, and
1111 # 'else STRING' ternary expression lines.
1113 # WMA4 a single space.
1116 # WMA4 the lengths of any leaves that came before that space,
1117 # but after any closing bracket before that space.
1118 for leaf in reversed(LL[: p_idx + 1]):
1119 offset += len(str(leaf))
1120 if leaf.type in CLOSING_BRACKETS:
1123 if is_valid_index(string_idx + 1):
1124 N = LL[string_idx + 1]
1125 if N.type == token.RPAR and N.value == "" and len(LL) > string_idx + 2:
1126 # If the next leaf is an empty RPAR placeholder, we should skip it.
1127 N = LL[string_idx + 2]
1129 if N.type == token.COMMA:
1130 # WMA4 a single comma at the end of the string (e.g `STRING,`).
1133 if is_valid_index(string_idx + 2):
1134 NN = LL[string_idx + 2]
1136 if N.type == token.DOT and NN.type == token.NAME:
1137 # This conditional branch is meant to handle method calls invoked
1138 # off of a string literal up to and including the LPAR character.
1140 # WMA4 the '.' character.
1144 is_valid_index(string_idx + 3)
1145 and LL[string_idx + 3].type == token.LPAR
1147 # WMA4 the left parenthesis character.
1150 # WMA4 the length of the method's name.
1151 offset += len(NN.value)
1153 has_comments = False
1154 for comment_leaf in line.comments_after(LL[string_idx]):
1155 if not has_comments:
1157 # WMA4 two spaces before the '#' character.
1160 # WMA4 the length of the inline comment.
1161 offset += len(comment_leaf.value)
1163 max_string_length = self.line_length - offset
1164 return max_string_length
1167 def _prefer_paren_wrap_match(LL: List[Leaf]) -> Optional[int]:
1170 string_idx such that @LL[string_idx] is equal to our target (i.e.
1171 matched) string, if this line matches the "prefer paren wrap" statement
1172 requirements listed in the 'Requirements' section of the StringParenWrapper
1177 # The line must start with a string.
1178 if LL[0].type != token.STRING:
1181 # If the string is surrounded by commas (or is the first/last child)...
1182 prev_sibling = LL[0].prev_sibling
1183 next_sibling = LL[0].next_sibling
1184 if not prev_sibling and not next_sibling and parent_type(LL[0]) == syms.atom:
1185 # If it's an atom string, we need to check the parent atom's siblings.
1186 parent = LL[0].parent
1187 assert parent is not None # For type checkers.
1188 prev_sibling = parent.prev_sibling
1189 next_sibling = parent.next_sibling
1190 if (not prev_sibling or prev_sibling.type == token.COMMA) and (
1191 not next_sibling or next_sibling.type == token.COMMA
1198 def iter_fexpr_spans(s: str) -> Iterator[Tuple[int, int]]:
1200 Yields spans corresponding to expressions in a given f-string.
1201 Spans are half-open ranges (left inclusive, right exclusive).
1202 Assumes the input string is a valid f-string, but will not crash if the input
1205 stack: List[int] = [] # our curly paren stack
1209 # if we're in a string part of the f-string, ignore escaped curly braces
1210 if not stack and i + 1 < len(s) and s[i + 1] == "{":
1222 # we've made it back out of the expression! yield the span
1228 # if we're in an expression part of the f-string, fast forward through strings
1229 # note that backslashes are not legal in the expression portion of f-strings
1232 if s[i : i + 3] in ("'''", '"""'):
1233 delim = s[i : i + 3]
1234 elif s[i] in ("'", '"'):
1238 while i < len(s) and s[i : i + len(delim)] != delim:
1245 def fstring_contains_expr(s: str) -> bool:
1246 return any(iter_fexpr_spans(s))
1249 def _toggle_fexpr_quotes(fstring: str, old_quote: str) -> str:
1251 Toggles quotes used in f-string expressions that are `old_quote`.
1253 f-string expressions can't contain backslashes, so we need to toggle the
1254 quotes if the f-string itself will end up using the same quote. We can
1255 simply toggle without escaping because, quotes can't be reused in f-string
1256 expressions. They will fail to parse.
1258 NOTE: If PEP 701 is accepted, above statement will no longer be true.
1259 Though if quotes can be reused, we can simply reuse them without updates or
1260 escaping, once Black figures out how to parse the new grammar.
1262 new_quote = "'" if old_quote == '"' else '"'
1265 for start, end in iter_fexpr_spans(fstring):
1266 parts.append(fstring[previous_index:start])
1267 parts.append(fstring[start:end].replace(old_quote, new_quote))
1268 previous_index = end
1269 parts.append(fstring[previous_index:])
1270 return "".join(parts)
1273 class StringSplitter(BaseStringSplitter, CustomSplitMapMixin):
1275 StringTransformer that splits "atom" strings (i.e. strings which exist on
1276 lines by themselves).
1279 * The line consists ONLY of a single string (possibly prefixed by a
1280 string operator [e.g. '+' or '==']), MAYBE a string trailer, and MAYBE
1283 * All of the requirements listed in BaseStringSplitter's docstring.
1286 The string mentioned in the 'Requirements' section is split into as
1287 many substrings as necessary to adhere to the configured line length.
1289 In the final set of substrings, no substring should be smaller than
1290 MIN_SUBSTR_SIZE characters.
1292 The string will ONLY be split on spaces (i.e. each new substring should
1293 start with a space). Note that the string will NOT be split on a space
1294 which is escaped with a backslash.
1296 If the string is an f-string, it will NOT be split in the middle of an
1297 f-expression (e.g. in f"FooBar: {foo() if x else bar()}", {foo() if x
1298 else bar()} is an f-expression).
1300 If the string that is being split has an associated set of custom split
1301 records and those custom splits will NOT result in any line going over
1302 the configured line length, those custom splits are used. Otherwise the
1303 string is split as late as possible (from left-to-right) while still
1304 adhering to the transformation rules listed above.
1307 StringSplitter relies on StringMerger to construct the appropriate
1308 CustomSplit objects and add them to the custom split map.
1311 MIN_SUBSTR_SIZE: Final = 6
1313 def do_splitter_match(self, line: Line) -> TMatchResult:
1316 if self._prefer_paren_wrap_match(LL) is not None:
1317 return TErr("Line needs to be wrapped in parens first.")
1319 is_valid_index = is_valid_index_factory(LL)
1323 # The first two leaves MAY be the 'not in' keywords...
1326 and is_valid_index(idx + 1)
1327 and [LL[idx].type, LL[idx + 1].type] == [token.NAME, token.NAME]
1328 and str(LL[idx]) + str(LL[idx + 1]) == "not in"
1331 # Else the first leaf MAY be a string operator symbol or the 'in' keyword...
1332 elif is_valid_index(idx) and (
1333 LL[idx].type in self.STRING_OPERATORS
1334 or LL[idx].type == token.NAME
1335 and str(LL[idx]) == "in"
1339 # The next/first leaf MAY be an empty LPAR...
1340 if is_valid_index(idx) and is_empty_lpar(LL[idx]):
1343 # The next/first leaf MUST be a string...
1344 if not is_valid_index(idx) or LL[idx].type != token.STRING:
1345 return TErr("Line does not start with a string.")
1349 # Skip the string trailer, if one exists.
1350 string_parser = StringParser()
1351 idx = string_parser.parse(LL, string_idx)
1353 # That string MAY be followed by an empty RPAR...
1354 if is_valid_index(idx) and is_empty_rpar(LL[idx]):
1357 # That string / empty RPAR leaf MAY be followed by a comma...
1358 if is_valid_index(idx) and LL[idx].type == token.COMMA:
1361 # But no more leaves are allowed...
1362 if is_valid_index(idx):
1363 return TErr("This line does not end with a string.")
1365 return Ok([string_idx])
1368 self, line: Line, string_indices: List[int]
1369 ) -> Iterator[TResult[Line]]:
1371 assert len(string_indices) == 1, (
1372 f"{self.__class__.__name__} should only find one match at a time, found"
1373 f" {len(string_indices)}"
1375 string_idx = string_indices[0]
1377 QUOTE = LL[string_idx].value[-1]
1379 is_valid_index = is_valid_index_factory(LL)
1380 insert_str_child = insert_str_child_factory(LL[string_idx])
1382 prefix = get_string_prefix(LL[string_idx].value).lower()
1384 # We MAY choose to drop the 'f' prefix from substrings that don't
1385 # contain any f-expressions, but ONLY if the original f-string
1386 # contains at least one f-expression. Otherwise, we will alter the AST
1388 drop_pointless_f_prefix = ("f" in prefix) and fstring_contains_expr(
1389 LL[string_idx].value
1392 first_string_line = True
1394 string_op_leaves = self._get_string_operator_leaves(LL)
1395 string_op_leaves_length = (
1396 sum(len(str(prefix_leaf)) for prefix_leaf in string_op_leaves) + 1
1401 def maybe_append_string_operators(new_line: Line) -> None:
1404 If @line starts with a string operator and this is the first
1405 line we are constructing, this function appends the string
1406 operator to @new_line and replaces the old string operator leaf
1407 in the node structure. Otherwise this function does nothing.
1409 maybe_prefix_leaves = string_op_leaves if first_string_line else []
1410 for i, prefix_leaf in enumerate(maybe_prefix_leaves):
1411 replace_child(LL[i], prefix_leaf)
1412 new_line.append(prefix_leaf)
1415 is_valid_index(string_idx + 1) and LL[string_idx + 1].type == token.COMMA
1418 def max_last_string() -> int:
1421 The max allowed length of the string value used for the last
1422 line we will construct.
1424 result = self.line_length
1425 result -= line.depth * 4
1426 result -= 1 if ends_with_comma else 0
1427 result -= string_op_leaves_length
1430 # --- Calculate Max Break Index (for string value)
1431 # We start with the line length limit
1432 max_break_idx = self.line_length
1433 # The last index of a string of length N is N-1.
1435 # Leading whitespace is not present in the string value (e.g. Leaf.value).
1436 max_break_idx -= line.depth * 4
1437 if max_break_idx < 0:
1439 f"Unable to split {LL[string_idx].value} at such high of a line depth:"
1444 # Check if StringMerger registered any custom splits.
1445 custom_splits = self.pop_custom_splits(LL[string_idx].value)
1446 # We use them ONLY if none of them would produce lines that exceed the
1448 use_custom_breakpoints = bool(
1450 and all(csplit.break_idx <= max_break_idx for csplit in custom_splits)
1453 # Temporary storage for the remaining chunk of the string line that
1454 # can't fit onto the line currently being constructed.
1455 rest_value = LL[string_idx].value
1457 def more_splits_should_be_made() -> bool:
1460 True iff `rest_value` (the remaining string value from the last
1461 split), should be split again.
1463 if use_custom_breakpoints:
1464 return len(custom_splits) > 1
1466 return len(rest_value) > max_last_string()
1468 string_line_results: List[Ok[Line]] = []
1469 while more_splits_should_be_made():
1470 if use_custom_breakpoints:
1471 # Custom User Split (manual)
1472 csplit = custom_splits.pop(0)
1473 break_idx = csplit.break_idx
1475 # Algorithmic Split (automatic)
1476 max_bidx = max_break_idx - string_op_leaves_length
1477 maybe_break_idx = self._get_break_idx(rest_value, max_bidx)
1478 if maybe_break_idx is None:
1479 # If we are unable to algorithmically determine a good split
1480 # and this string has custom splits registered to it, we
1481 # fall back to using them--which means we have to start
1482 # over from the beginning.
1484 rest_value = LL[string_idx].value
1485 string_line_results = []
1486 first_string_line = True
1487 use_custom_breakpoints = True
1490 # Otherwise, we stop splitting here.
1493 break_idx = maybe_break_idx
1495 # --- Construct `next_value`
1496 next_value = rest_value[:break_idx] + QUOTE
1498 # HACK: The following 'if' statement is a hack to fix the custom
1499 # breakpoint index in the case of either: (a) substrings that were
1500 # f-strings but will have the 'f' prefix removed OR (b) substrings
1501 # that were not f-strings but will now become f-strings because of
1502 # redundant use of the 'f' prefix (i.e. none of the substrings
1503 # contain f-expressions but one or more of them had the 'f' prefix
1504 # anyway; in which case, we will prepend 'f' to _all_ substrings).
1506 # There is probably a better way to accomplish what is being done
1509 # If this substring is an f-string, we _could_ remove the 'f'
1510 # prefix, and the current custom split did NOT originally use a
1513 use_custom_breakpoints
1514 and not csplit.has_prefix
1516 # `next_value == prefix + QUOTE` happens when the custom
1517 # split is an empty string.
1518 next_value == prefix + QUOTE
1519 or next_value != self._normalize_f_string(next_value, prefix)
1522 # Then `csplit.break_idx` will be off by one after removing
1525 next_value = rest_value[:break_idx] + QUOTE
1527 if drop_pointless_f_prefix:
1528 next_value = self._normalize_f_string(next_value, prefix)
1530 # --- Construct `next_leaf`
1531 next_leaf = Leaf(token.STRING, next_value)
1532 insert_str_child(next_leaf)
1533 self._maybe_normalize_string_quotes(next_leaf)
1535 # --- Construct `next_line`
1536 next_line = line.clone()
1537 maybe_append_string_operators(next_line)
1538 next_line.append(next_leaf)
1539 string_line_results.append(Ok(next_line))
1541 rest_value = prefix + QUOTE + rest_value[break_idx:]
1542 first_string_line = False
1544 yield from string_line_results
1546 if drop_pointless_f_prefix:
1547 rest_value = self._normalize_f_string(rest_value, prefix)
1549 rest_leaf = Leaf(token.STRING, rest_value)
1550 insert_str_child(rest_leaf)
1552 # NOTE: I could not find a test case that verifies that the following
1553 # line is actually necessary, but it seems to be. Otherwise we risk
1554 # not normalizing the last substring, right?
1555 self._maybe_normalize_string_quotes(rest_leaf)
1557 last_line = line.clone()
1558 maybe_append_string_operators(last_line)
1560 # If there are any leaves to the right of the target string...
1561 if is_valid_index(string_idx + 1):
1562 # We use `temp_value` here to determine how long the last line
1563 # would be if we were to append all the leaves to the right of the
1564 # target string to the last string line.
1565 temp_value = rest_value
1566 for leaf in LL[string_idx + 1 :]:
1567 temp_value += str(leaf)
1568 if leaf.type == token.LPAR:
1571 # Try to fit them all on the same line with the last substring...
1573 len(temp_value) <= max_last_string()
1574 or LL[string_idx + 1].type == token.COMMA
1576 last_line.append(rest_leaf)
1577 append_leaves(last_line, line, LL[string_idx + 1 :])
1579 # Otherwise, place the last substring on one line and everything
1580 # else on a line below that...
1582 last_line.append(rest_leaf)
1585 non_string_line = line.clone()
1586 append_leaves(non_string_line, line, LL[string_idx + 1 :])
1587 yield Ok(non_string_line)
1588 # Else the target string was the last leaf...
1590 last_line.append(rest_leaf)
1591 last_line.comments = line.comments.copy()
1594 def _iter_nameescape_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
1597 All ranges of @string which, if @string were to be split there,
1598 would result in the splitting of an \\N{...} expression (which is NOT
1601 # True - the previous backslash was unescaped
1602 # False - the previous backslash was escaped *or* there was no backslash
1603 previous_was_unescaped_backslash = False
1604 it = iter(enumerate(string))
1607 previous_was_unescaped_backslash = not previous_was_unescaped_backslash
1609 if not previous_was_unescaped_backslash or c != "N":
1610 previous_was_unescaped_backslash = False
1612 previous_was_unescaped_backslash = False
1614 begin = idx - 1 # the position of backslash before \N{...}
1620 # malformed nameescape expression?
1621 # should have been detected by AST parsing earlier...
1622 raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
1625 def _iter_fexpr_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
1628 All ranges of @string which, if @string were to be split there,
1629 would result in the splitting of an f-expression (which is NOT
1632 if "f" not in get_string_prefix(string).lower():
1634 yield from iter_fexpr_spans(string)
1636 def _get_illegal_split_indices(self, string: str) -> Set[Index]:
1637 illegal_indices: Set[Index] = set()
1639 self._iter_fexpr_slices(string),
1640 self._iter_nameescape_slices(string),
1642 for it in iterators:
1643 for begin, end in it:
1644 illegal_indices.update(range(begin, end + 1))
1645 return illegal_indices
1647 def _get_break_idx(self, string: str, max_break_idx: int) -> Optional[int]:
1649 This method contains the algorithm that StringSplitter uses to
1650 determine which character to split each string at.
1653 @string: The substring that we are attempting to split.
1654 @max_break_idx: The ideal break index. We will return this value if it
1655 meets all the necessary conditions. In the likely event that it
1656 doesn't we will try to find the closest index BELOW @max_break_idx
1657 that does. If that fails, we will expand our search by also
1658 considering all valid indices ABOVE @max_break_idx.
1661 * assert_is_leaf_string(@string)
1662 * 0 <= @max_break_idx < len(@string)
1665 break_idx, if an index is able to be found that meets all of the
1666 conditions listed in the 'Transformations' section of this classes'
1671 is_valid_index = is_valid_index_factory(string)
1673 assert is_valid_index(max_break_idx)
1674 assert_is_leaf_string(string)
1676 _illegal_split_indices = self._get_illegal_split_indices(string)
1678 def breaks_unsplittable_expression(i: Index) -> bool:
1681 True iff returning @i would result in the splitting of an
1682 unsplittable expression (which is NOT allowed).
1684 return i in _illegal_split_indices
1686 def passes_all_checks(i: Index) -> bool:
1689 True iff ALL of the conditions listed in the 'Transformations'
1690 section of this classes' docstring would be be met by returning @i.
1692 is_space = string[i] == " "
1694 is_not_escaped = True
1696 while is_valid_index(j) and string[j] == "\\":
1697 is_not_escaped = not is_not_escaped
1701 len(string[i:]) >= self.MIN_SUBSTR_SIZE
1702 and len(string[:i]) >= self.MIN_SUBSTR_SIZE
1708 and not breaks_unsplittable_expression(i)
1711 # First, we check all indices BELOW @max_break_idx.
1712 break_idx = max_break_idx
1713 while is_valid_index(break_idx - 1) and not passes_all_checks(break_idx):
1716 if not passes_all_checks(break_idx):
1717 # If that fails, we check all indices ABOVE @max_break_idx.
1719 # If we are able to find a valid index here, the next line is going
1720 # to be longer than the specified line length, but it's probably
1721 # better than doing nothing at all.
1722 break_idx = max_break_idx + 1
1723 while is_valid_index(break_idx + 1) and not passes_all_checks(break_idx):
1726 if not is_valid_index(break_idx) or not passes_all_checks(break_idx):
1731 def _maybe_normalize_string_quotes(self, leaf: Leaf) -> None:
1732 if self.normalize_strings:
1733 leaf.value = normalize_string_quotes(leaf.value)
1735 def _normalize_f_string(self, string: str, prefix: str) -> str:
1738 * assert_is_leaf_string(@string)
1741 * If @string is an f-string that contains no f-expressions, we
1742 return a string identical to @string except that the 'f' prefix
1743 has been stripped and all double braces (i.e. '{{' or '}}') have
1744 been normalized (i.e. turned into '{' or '}').
1746 * Otherwise, we return @string.
1748 assert_is_leaf_string(string)
1750 if "f" in prefix and not fstring_contains_expr(string):
1751 new_prefix = prefix.replace("f", "")
1753 temp = string[len(prefix) :]
1754 temp = re.sub(r"\{\{", "{", temp)
1755 temp = re.sub(r"\}\}", "}", temp)
1758 return f"{new_prefix}{new_string}"
1762 def _get_string_operator_leaves(self, leaves: Iterable[Leaf]) -> List[Leaf]:
1765 string_op_leaves = []
1767 while LL[i].type in self.STRING_OPERATORS + [token.NAME]:
1768 prefix_leaf = Leaf(LL[i].type, str(LL[i]).strip())
1769 string_op_leaves.append(prefix_leaf)
1771 return string_op_leaves
1774 class StringParenWrapper(BaseStringSplitter, CustomSplitMapMixin):
1776 StringTransformer that wraps strings in parens and then splits at the LPAR.
1779 All of the requirements listed in BaseStringSplitter's docstring in
1780 addition to the requirements listed below:
1782 * The line is a return/yield statement, which returns/yields a string.
1784 * The line is part of a ternary expression (e.g. `x = y if cond else
1785 z`) such that the line starts with `else <string>`, where <string> is
1788 * The line is an assert statement, which ends with a string.
1790 * The line is an assignment statement (e.g. `x = <string>` or `x +=
1791 <string>`) such that the variable is being assigned the value of some
1794 * The line is a dictionary key assignment where some valid key is being
1795 assigned the value of some string.
1797 * The line is an lambda expression and the value is a string.
1799 * The line starts with an "atom" string that prefers to be wrapped in
1800 parens. It's preferred to be wrapped when the string is surrounded by
1801 commas (or is the first/last child).
1804 The chosen string is wrapped in parentheses and then split at the LPAR.
1806 We then have one line which ends with an LPAR and another line that
1807 starts with the chosen string. The latter line is then split again at
1808 the RPAR. This results in the RPAR (and possibly a trailing comma)
1809 being placed on its own line.
1811 NOTE: If any leaves exist to the right of the chosen string (except
1812 for a trailing comma, which would be placed after the RPAR), those
1813 leaves are placed inside the parentheses. In effect, the chosen
1814 string is not necessarily being "wrapped" by parentheses. We can,
1815 however, count on the LPAR being placed directly before the chosen
1818 In other words, StringParenWrapper creates "atom" strings. These
1819 can then be split again by StringSplitter, if necessary.
1822 In the event that a string line split by StringParenWrapper is
1823 changed such that it no longer needs to be given its own line,
1824 StringParenWrapper relies on StringParenStripper to clean up the
1825 parentheses it created.
1827 For "atom" strings that prefers to be wrapped in parens, it requires
1828 StringSplitter to hold the split until the string is wrapped in parens.
1831 def do_splitter_match(self, line: Line) -> TMatchResult:
1834 if line.leaves[-1].type in OPENING_BRACKETS:
1836 "Cannot wrap parens around a line that ends in an opening bracket."
1840 self._return_match(LL)
1841 or self._else_match(LL)
1842 or self._assert_match(LL)
1843 or self._assign_match(LL)
1844 or self._dict_or_lambda_match(LL)
1845 or self._prefer_paren_wrap_match(LL)
1848 if string_idx is not None:
1849 string_value = line.leaves[string_idx].value
1850 # If the string has no spaces...
1851 if " " not in string_value:
1852 # And will still violate the line length limit when split...
1853 max_string_length = self.line_length - ((line.depth + 1) * 4)
1854 if len(string_value) > max_string_length:
1855 # And has no associated custom splits...
1856 if not self.has_custom_splits(string_value):
1857 # Then we should NOT put this string on its own line.
1859 "We do not wrap long strings in parentheses when the"
1860 " resultant line would still be over the specified line"
1861 " length and can't be split further by StringSplitter."
1863 return Ok([string_idx])
1865 return TErr("This line does not contain any non-atomic strings.")
1868 def _return_match(LL: List[Leaf]) -> Optional[int]:
1871 string_idx such that @LL[string_idx] is equal to our target (i.e.
1872 matched) string, if this line matches the return/yield statement
1873 requirements listed in the 'Requirements' section of this classes'
1878 # If this line is apart of a return/yield statement and the first leaf
1879 # contains either the "return" or "yield" keywords...
1880 if parent_type(LL[0]) in [syms.return_stmt, syms.yield_expr] and LL[
1882 ].value in ["return", "yield"]:
1883 is_valid_index = is_valid_index_factory(LL)
1885 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1886 # The next visible leaf MUST contain a string...
1887 if is_valid_index(idx) and LL[idx].type == token.STRING:
1893 def _else_match(LL: List[Leaf]) -> Optional[int]:
1896 string_idx such that @LL[string_idx] is equal to our target (i.e.
1897 matched) string, if this line matches the ternary expression
1898 requirements listed in the 'Requirements' section of this classes'
1903 # If this line is apart of a ternary expression and the first leaf
1904 # contains the "else" keyword...
1906 parent_type(LL[0]) == syms.test
1907 and LL[0].type == token.NAME
1908 and LL[0].value == "else"
1910 is_valid_index = is_valid_index_factory(LL)
1912 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1913 # The next visible leaf MUST contain a string...
1914 if is_valid_index(idx) and LL[idx].type == token.STRING:
1920 def _assert_match(LL: List[Leaf]) -> Optional[int]:
1923 string_idx such that @LL[string_idx] is equal to our target (i.e.
1924 matched) string, if this line matches the assert statement
1925 requirements listed in the 'Requirements' section of this classes'
1930 # If this line is apart of an assert statement and the first leaf
1931 # contains the "assert" keyword...
1932 if parent_type(LL[0]) == syms.assert_stmt and LL[0].value == "assert":
1933 is_valid_index = is_valid_index_factory(LL)
1935 for i, leaf in enumerate(LL):
1936 # We MUST find a comma...
1937 if leaf.type == token.COMMA:
1938 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1940 # That comma MUST be followed by a string...
1941 if is_valid_index(idx) and LL[idx].type == token.STRING:
1944 # Skip the string trailer, if one exists.
1945 string_parser = StringParser()
1946 idx = string_parser.parse(LL, string_idx)
1948 # But no more leaves are allowed...
1949 if not is_valid_index(idx):
1955 def _assign_match(LL: List[Leaf]) -> Optional[int]:
1958 string_idx such that @LL[string_idx] is equal to our target (i.e.
1959 matched) string, if this line matches the assignment statement
1960 requirements listed in the 'Requirements' section of this classes'
1965 # If this line is apart of an expression statement or is a function
1966 # argument AND the first leaf contains a variable name...
1968 parent_type(LL[0]) in [syms.expr_stmt, syms.argument, syms.power]
1969 and LL[0].type == token.NAME
1971 is_valid_index = is_valid_index_factory(LL)
1973 for i, leaf in enumerate(LL):
1974 # We MUST find either an '=' or '+=' symbol...
1975 if leaf.type in [token.EQUAL, token.PLUSEQUAL]:
1976 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1978 # That symbol MUST be followed by a string...
1979 if is_valid_index(idx) and LL[idx].type == token.STRING:
1982 # Skip the string trailer, if one exists.
1983 string_parser = StringParser()
1984 idx = string_parser.parse(LL, string_idx)
1986 # The next leaf MAY be a comma iff this line is apart
1987 # of a function argument...
1989 parent_type(LL[0]) == syms.argument
1990 and is_valid_index(idx)
1991 and LL[idx].type == token.COMMA
1995 # But no more leaves are allowed...
1996 if not is_valid_index(idx):
2002 def _dict_or_lambda_match(LL: List[Leaf]) -> Optional[int]:
2005 string_idx such that @LL[string_idx] is equal to our target (i.e.
2006 matched) string, if this line matches the dictionary key assignment
2007 statement or lambda expression requirements listed in the
2008 'Requirements' section of this classes' docstring.
2012 # If this line is a part of a dictionary key assignment or lambda expression...
2013 parent_types = [parent_type(LL[0]), parent_type(LL[0].parent)]
2014 if syms.dictsetmaker in parent_types or syms.lambdef in parent_types:
2015 is_valid_index = is_valid_index_factory(LL)
2017 for i, leaf in enumerate(LL):
2018 # We MUST find a colon, it can either be dict's or lambda's colon...
2019 if leaf.type == token.COLON and i < len(LL) - 1:
2020 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
2022 # That colon MUST be followed by a string...
2023 if is_valid_index(idx) and LL[idx].type == token.STRING:
2026 # Skip the string trailer, if one exists.
2027 string_parser = StringParser()
2028 idx = string_parser.parse(LL, string_idx)
2030 # That string MAY be followed by a comma...
2031 if is_valid_index(idx) and LL[idx].type == token.COMMA:
2034 # But no more leaves are allowed...
2035 if not is_valid_index(idx):
2041 self, line: Line, string_indices: List[int]
2042 ) -> Iterator[TResult[Line]]:
2044 assert len(string_indices) == 1, (
2045 f"{self.__class__.__name__} should only find one match at a time, found"
2046 f" {len(string_indices)}"
2048 string_idx = string_indices[0]
2050 is_valid_index = is_valid_index_factory(LL)
2051 insert_str_child = insert_str_child_factory(LL[string_idx])
2054 ends_with_comma = False
2055 if LL[comma_idx].type == token.COMMA:
2056 ends_with_comma = True
2058 leaves_to_steal_comments_from = [LL[string_idx]]
2060 leaves_to_steal_comments_from.append(LL[comma_idx])
2063 first_line = line.clone()
2064 left_leaves = LL[:string_idx]
2066 # We have to remember to account for (possibly invisible) LPAR and RPAR
2067 # leaves that already wrapped the target string. If these leaves do
2068 # exist, we will replace them with our own LPAR and RPAR leaves.
2069 old_parens_exist = False
2070 if left_leaves and left_leaves[-1].type == token.LPAR:
2071 old_parens_exist = True
2072 leaves_to_steal_comments_from.append(left_leaves[-1])
2075 append_leaves(first_line, line, left_leaves)
2077 lpar_leaf = Leaf(token.LPAR, "(")
2078 if old_parens_exist:
2079 replace_child(LL[string_idx - 1], lpar_leaf)
2081 insert_str_child(lpar_leaf)
2082 first_line.append(lpar_leaf)
2084 # We throw inline comments that were originally to the right of the
2085 # target string to the top line. They will now be shown to the right of
2087 for leaf in leaves_to_steal_comments_from:
2088 for comment_leaf in line.comments_after(leaf):
2089 first_line.append(comment_leaf, preformatted=True)
2091 yield Ok(first_line)
2093 # --- Middle (String) Line
2094 # We only need to yield one (possibly too long) string line, since the
2095 # `StringSplitter` will break it down further if necessary.
2096 string_value = LL[string_idx].value
2099 depth=line.depth + 1,
2100 inside_brackets=True,
2101 should_split_rhs=line.should_split_rhs,
2102 magic_trailing_comma=line.magic_trailing_comma,
2104 string_leaf = Leaf(token.STRING, string_value)
2105 insert_str_child(string_leaf)
2106 string_line.append(string_leaf)
2108 old_rpar_leaf = None
2109 if is_valid_index(string_idx + 1):
2110 right_leaves = LL[string_idx + 1 :]
2114 if old_parens_exist:
2115 assert right_leaves and right_leaves[-1].type == token.RPAR, (
2116 "Apparently, old parentheses do NOT exist?!"
2117 f" (left_leaves={left_leaves}, right_leaves={right_leaves})"
2119 old_rpar_leaf = right_leaves.pop()
2120 elif right_leaves and right_leaves[-1].type == token.RPAR:
2121 # Special case for lambda expressions as dict's value, e.g.:
2123 # "key": lambda x: f"formatted: {x},
2125 # After wrapping the dict's value with parentheses, the string is
2126 # followed by a RPAR but its opening bracket is lambda's, not
2128 # "key": (lambda x: f"formatted: {x}),
2129 opening_bracket = right_leaves[-1].opening_bracket
2130 if opening_bracket is not None and opening_bracket in left_leaves:
2131 index = left_leaves.index(opening_bracket)
2134 and index < len(left_leaves) - 1
2135 and left_leaves[index - 1].type == token.COLON
2136 and left_leaves[index + 1].value == "lambda"
2140 append_leaves(string_line, line, right_leaves)
2142 yield Ok(string_line)
2145 last_line = line.clone()
2146 last_line.bracket_tracker = first_line.bracket_tracker
2148 new_rpar_leaf = Leaf(token.RPAR, ")")
2149 if old_rpar_leaf is not None:
2150 replace_child(old_rpar_leaf, new_rpar_leaf)
2152 insert_str_child(new_rpar_leaf)
2153 last_line.append(new_rpar_leaf)
2155 # If the target string ended with a comma, we place this comma to the
2156 # right of the RPAR on the last line.
2158 comma_leaf = Leaf(token.COMMA, ",")
2159 replace_child(LL[comma_idx], comma_leaf)
2160 last_line.append(comma_leaf)
2167 A state machine that aids in parsing a string's "trailer", which can be
2168 either non-existent, an old-style formatting sequence (e.g. `% varX` or `%
2169 (varX, varY)`), or a method-call / attribute access (e.g. `.format(varX,
2172 NOTE: A new StringParser object MUST be instantiated for each string
2173 trailer we need to parse.
2176 We shall assume that `line` equals the `Line` object that corresponds
2177 to the following line of python code:
2179 x = "Some {}.".format("String") + some_other_string
2182 Furthermore, we will assume that `string_idx` is some index such that:
2184 assert line.leaves[string_idx].value == "Some {}."
2187 The following code snippet then holds:
2189 string_parser = StringParser()
2190 idx = string_parser.parse(line.leaves, string_idx)
2191 assert line.leaves[idx].type == token.PLUS
2195 DEFAULT_TOKEN: Final = 20210605
2197 # String Parser States
2202 SINGLE_FMT_ARG: Final = 5
2207 # Lookup Table for Next State
2208 _goto: Final[Dict[Tuple[ParserState, NodeType], ParserState]] = {
2209 # A string trailer may start with '.' OR '%'.
2210 (START, token.DOT): DOT,
2211 (START, token.PERCENT): PERCENT,
2212 (START, DEFAULT_TOKEN): DONE,
2213 # A '.' MUST be followed by an attribute or method name.
2214 (DOT, token.NAME): NAME,
2215 # A method name MUST be followed by an '(', whereas an attribute name
2216 # is the last symbol in the string trailer.
2217 (NAME, token.LPAR): LPAR,
2218 (NAME, DEFAULT_TOKEN): DONE,
2219 # A '%' symbol can be followed by an '(' or a single argument (e.g. a
2220 # string or variable name).
2221 (PERCENT, token.LPAR): LPAR,
2222 (PERCENT, DEFAULT_TOKEN): SINGLE_FMT_ARG,
2223 # If a '%' symbol is followed by a single argument, that argument is
2224 # the last leaf in the string trailer.
2225 (SINGLE_FMT_ARG, DEFAULT_TOKEN): DONE,
2226 # If present, a ')' symbol is the last symbol in a string trailer.
2227 # (NOTE: LPARS and nested RPARS are not included in this lookup table,
2228 # since they are treated as a special case by the parsing logic in this
2229 # classes' implementation.)
2230 (RPAR, DEFAULT_TOKEN): DONE,
2233 def __init__(self) -> None:
2234 self._state = self.START
2235 self._unmatched_lpars = 0
2237 def parse(self, leaves: List[Leaf], string_idx: int) -> int:
2240 * @leaves[@string_idx].type == token.STRING
2243 The index directly after the last leaf which is apart of the string
2244 trailer, if a "trailer" exists.
2246 @string_idx + 1, if no string "trailer" exists.
2248 assert leaves[string_idx].type == token.STRING
2250 idx = string_idx + 1
2251 while idx < len(leaves) and self._next_state(leaves[idx]):
2255 def _next_state(self, leaf: Leaf) -> bool:
2258 * On the first call to this function, @leaf MUST be the leaf that
2259 was directly after the string leaf in question (e.g. if our target
2260 string is `line.leaves[i]` then the first call to this method must
2261 be `line.leaves[i + 1]`).
2262 * On the next call to this function, the leaf parameter passed in
2263 MUST be the leaf directly following @leaf.
2266 True iff @leaf is apart of the string's trailer.
2268 # We ignore empty LPAR or RPAR leaves.
2269 if is_empty_par(leaf):
2272 next_token = leaf.type
2273 if next_token == token.LPAR:
2274 self._unmatched_lpars += 1
2276 current_state = self._state
2278 # The LPAR parser state is a special case. We will return True until we
2279 # find the matching RPAR token.
2280 if current_state == self.LPAR:
2281 if next_token == token.RPAR:
2282 self._unmatched_lpars -= 1
2283 if self._unmatched_lpars == 0:
2284 self._state = self.RPAR
2285 # Otherwise, we use a lookup table to determine the next state.
2287 # If the lookup table matches the current state to the next
2288 # token, we use the lookup table.
2289 if (current_state, next_token) in self._goto:
2290 self._state = self._goto[current_state, next_token]
2292 # Otherwise, we check if a the current state was assigned a
2294 if (current_state, self.DEFAULT_TOKEN) in self._goto:
2295 self._state = self._goto[current_state, self.DEFAULT_TOKEN]
2296 # If no default has been assigned, then this parser has a logic
2299 raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
2301 if self._state == self.DONE:
2307 def insert_str_child_factory(string_leaf: Leaf) -> Callable[[LN], None]:
2309 Factory for a convenience function that is used to orphan @string_leaf
2310 and then insert multiple new leaves into the same part of the node
2311 structure that @string_leaf had originally occupied.
2314 Let `string_leaf = Leaf(token.STRING, '"foo"')` and `N =
2315 string_leaf.parent`. Assume the node `N` has the following
2322 Leaf(STRING, '"foo"'),
2326 We then run the code snippet shown below.
2328 insert_str_child = insert_str_child_factory(string_leaf)
2330 lpar = Leaf(token.LPAR, '(')
2331 insert_str_child(lpar)
2333 bar = Leaf(token.STRING, '"bar"')
2334 insert_str_child(bar)
2336 rpar = Leaf(token.RPAR, ')')
2337 insert_str_child(rpar)
2340 After which point, it follows that `string_leaf.parent is None` and
2341 the node `N` now has the following structure:
2348 Leaf(STRING, '"bar"'),
2353 string_parent = string_leaf.parent
2354 string_child_idx = string_leaf.remove()
2356 def insert_str_child(child: LN) -> None:
2357 nonlocal string_child_idx
2359 assert string_parent is not None
2360 assert string_child_idx is not None
2362 string_parent.insert_child(string_child_idx, child)
2363 string_child_idx += 1
2365 return insert_str_child
2368 def is_valid_index_factory(seq: Sequence[Any]) -> Callable[[int], bool]:
2374 is_valid_index = is_valid_index_factory(my_list)
2376 assert is_valid_index(0)
2377 assert is_valid_index(2)
2379 assert not is_valid_index(3)
2380 assert not is_valid_index(-1)
2384 def is_valid_index(idx: int) -> bool:
2387 True iff @idx is positive AND seq[@idx] does NOT raise an
2390 return 0 <= idx < len(seq)
2392 return is_valid_index