All patches and comments are welcome. Please squash your changes to logical
commits before using git-format-patch and git-send-email to
patches@git.madduck.net.
If you'd read over the Git project's submission guidelines and adhered to them,
I'd be especially grateful.
2 String transformers that can split and merge strings.
6 from abc import ABC, abstractmethod
7 from collections import defaultdict
8 from dataclasses import dataclass
26 if sys.version_info < (3, 8):
27 from typing_extensions import Final, Literal
29 from typing import Literal, Final
31 from mypy_extensions import trait
33 from black.comments import contains_pragma_comment
34 from black.lines import Line, append_leaves
35 from black.mode import Feature, Mode
36 from black.nodes import (
43 is_part_of_annotation,
48 from black.rusty import Err, Ok, Result
49 from black.strings import (
50 assert_is_leaf_string,
54 normalize_string_quotes,
57 from blib2to3.pgen2 import token
58 from blib2to3.pytree import Leaf, Node
61 class CannotTransform(Exception):
62 """Base class for errors raised by Transformers."""
67 LN = Union[Leaf, Node]
68 Transformer = Callable[[Line, Collection[Feature], Mode], Iterator[Line]]
73 TResult = Result[T, CannotTransform] # (T)ransform Result
74 TMatchResult = TResult[List[Index]]
76 SPLIT_SAFE_CHARS = frozenset(["\u3001", "\u3002", "\uff0c"]) # East Asian stops
79 def TErr(err_msg: str) -> Err[CannotTransform]:
82 Convenience function used when working with the TResult type.
84 cant_transform = CannotTransform(err_msg)
85 return Err(cant_transform)
89 line: Line, features: Collection[Feature], mode: Mode
91 """A transformer which normalizes spacing around power operators."""
93 # Performance optimization to avoid unnecessary Leaf clones and other ops.
94 for leaf in line.leaves:
95 if leaf.type == token.DOUBLESTAR:
98 raise CannotTransform("No doublestar token was found in the line.")
100 def is_simple_lookup(index: int, step: Literal[1, -1]) -> bool:
101 # Brackets and parentheses indicate calls, subscripts, etc. ...
102 # basically stuff that doesn't count as "simple". Only a NAME lookup
103 # or dotted lookup (eg. NAME.NAME) is OK.
105 disallowed = {token.RPAR, token.RSQB}
107 disallowed = {token.LPAR, token.LSQB}
109 while 0 <= index < len(line.leaves):
110 current = line.leaves[index]
111 if current.type in disallowed:
113 if current.type not in {token.NAME, token.DOT} or current.value == "for":
114 # If the current token isn't disallowed, we'll assume this is simple as
115 # only the disallowed tokens are semantically attached to this lookup
116 # expression we're checking. Also, stop early if we hit the 'for' bit
117 # of a comprehension.
124 def is_simple_operand(index: int, kind: Literal["base", "exponent"]) -> bool:
125 # An operand is considered "simple" if's a NAME, a numeric CONSTANT, a simple
126 # lookup (see above), with or without a preceding unary operator.
127 start = line.leaves[index]
128 if start.type in {token.NAME, token.NUMBER}:
129 return is_simple_lookup(index, step=(1 if kind == "exponent" else -1))
131 if start.type in {token.PLUS, token.MINUS, token.TILDE}:
132 if line.leaves[index + 1].type in {token.NAME, token.NUMBER}:
133 # step is always one as bases with a preceding unary op will be checked
134 # for simplicity starting from the next token (so it'll hit the check
136 return is_simple_lookup(index + 1, step=1)
140 new_line = line.clone()
142 for idx, leaf in enumerate(line.leaves):
143 new_leaf = leaf.clone()
149 (0 < idx < len(line.leaves) - 1)
150 and leaf.type == token.DOUBLESTAR
151 and is_simple_operand(idx - 1, kind="base")
152 and line.leaves[idx - 1].value != "lambda"
153 and is_simple_operand(idx + 1, kind="exponent")
158 # We have to be careful to make a new line properly:
159 # - bracket related metadata must be maintained (handled by Line.append)
160 # - comments need to copied over, updating the leaf IDs they're attached to
161 new_line.append(new_leaf, preformatted=True)
162 for comment_leaf in line.comments_after(leaf):
163 new_line.append(comment_leaf, preformatted=True)
168 class StringTransformer(ABC):
170 An implementation of the Transformer protocol that relies on its
171 subclasses overriding the template methods `do_match(...)` and
174 This Transformer works exclusively on strings (for example, by merging
177 The following sections can be found among the docstrings of each concrete
178 StringTransformer subclass.
181 Which requirements must be met of the given Line for this
182 StringTransformer to be applied?
185 If the given Line meets all of the above requirements, which string
186 transformations can you expect to be applied to it by this
190 What contractual agreements does this StringTransformer have with other
191 StringTransfomers? Such collaborations should be eliminated/minimized
195 __name__: Final = "StringTransformer"
197 # Ideally this would be a dataclass, but unfortunately mypyc breaks when used with
199 def __init__(self, line_length: int, normalize_strings: bool) -> None:
200 self.line_length = line_length
201 self.normalize_strings = normalize_strings
204 def do_match(self, line: Line) -> TMatchResult:
207 * Ok(string_indices) such that for each index, `line.leaves[index]`
208 is our target string if a match was able to be made. For
209 transformers that don't result in more lines (e.g. StringMerger,
210 StringParenStripper), multiple matches and transforms are done at
211 once to reduce the complexity.
213 * Err(CannotTransform), if no match could be made.
218 self, line: Line, string_indices: List[int]
219 ) -> Iterator[TResult[Line]]:
222 * Ok(new_line) where new_line is the new transformed line.
224 * Err(CannotTransform) if the transformation failed for some reason. The
225 `do_match(...)` template method should usually be used to reject
226 the form of the given Line, but in some cases it is difficult to
227 know whether or not a Line meets the StringTransformer's
228 requirements until the transformation is already midway.
231 This method should NOT mutate @line directly, but it MAY mutate the
232 Line's underlying Node structure. (WARNING: If the underlying Node
233 structure IS altered, then this method should NOT be allowed to
234 yield an CannotTransform after that point.)
238 self, line: Line, _features: Collection[Feature], _mode: Mode
241 StringTransformer instances have a call signature that mirrors that of
242 the Transformer type.
245 CannotTransform(...) if the concrete StringTransformer class is unable
248 # Optimization to avoid calling `self.do_match(...)` when the line does
249 # not contain any string.
250 if not any(leaf.type == token.STRING for leaf in line.leaves):
251 raise CannotTransform("There are no strings in this line.")
253 match_result = self.do_match(line)
255 if isinstance(match_result, Err):
256 cant_transform = match_result.err()
257 raise CannotTransform(
258 f"The string transformer {self.__class__.__name__} does not recognize"
259 " this line as one that it can transform."
260 ) from cant_transform
262 string_indices = match_result.ok()
264 for line_result in self.do_transform(line, string_indices):
265 if isinstance(line_result, Err):
266 cant_transform = line_result.err()
267 raise CannotTransform(
268 "StringTransformer failed while attempting to transform string."
269 ) from cant_transform
270 line = line_result.ok()
276 """A custom (i.e. manual) string split.
278 A single CustomSplit instance represents a single substring.
281 Consider the following string:
288 This string will correspond to the following three CustomSplit instances:
290 CustomSplit(False, 16)
291 CustomSplit(False, 17)
292 CustomSplit(True, 16)
301 class CustomSplitMapMixin:
303 This mixin class is used to map merged strings to a sequence of
304 CustomSplits, which will then be used to re-split the strings iff none of
305 the resultant substrings go over the configured max line length.
308 _Key: ClassVar = Tuple[StringID, str]
309 _CUSTOM_SPLIT_MAP: ClassVar[Dict[_Key, Tuple[CustomSplit, ...]]] = defaultdict(
314 def _get_key(string: str) -> "CustomSplitMapMixin._Key":
317 A unique identifier that is used internally to map @string to a
318 group of custom splits.
320 return (id(string), string)
322 def add_custom_splits(
323 self, string: str, custom_splits: Iterable[CustomSplit]
325 """Custom Split Map Setter Method
328 Adds a mapping from @string to the custom splits @custom_splits.
330 key = self._get_key(string)
331 self._CUSTOM_SPLIT_MAP[key] = tuple(custom_splits)
333 def pop_custom_splits(self, string: str) -> List[CustomSplit]:
334 """Custom Split Map Getter Method
337 * A list of the custom splits that are mapped to @string, if any
343 Deletes the mapping between @string and its associated custom
344 splits (which are returned to the caller).
346 key = self._get_key(string)
348 custom_splits = self._CUSTOM_SPLIT_MAP[key]
349 del self._CUSTOM_SPLIT_MAP[key]
351 return list(custom_splits)
353 def has_custom_splits(self, string: str) -> bool:
356 True iff @string is associated with a set of custom splits.
358 key = self._get_key(string)
359 return key in self._CUSTOM_SPLIT_MAP
362 class StringMerger(StringTransformer, CustomSplitMapMixin):
363 """StringTransformer that merges strings together.
366 (A) The line contains adjacent strings such that ALL of the validation checks
367 listed in StringMerger._validate_msg(...)'s docstring pass.
369 (B) The line contains a string which uses line continuation backslashes.
372 Depending on which of the two requirements above where met, either:
374 (A) The string group associated with the target string is merged.
376 (B) All line-continuation backslashes are removed from the target string.
379 StringMerger provides custom split information to StringSplitter.
382 def do_match(self, line: Line) -> TMatchResult:
385 is_valid_index = is_valid_index_factory(LL)
389 while is_valid_index(idx):
392 leaf.type == token.STRING
393 and is_valid_index(idx + 1)
394 and LL[idx + 1].type == token.STRING
396 if not is_part_of_annotation(leaf):
397 string_indices.append(idx)
399 # Advance to the next non-STRING leaf.
401 while is_valid_index(idx) and LL[idx].type == token.STRING:
404 elif leaf.type == token.STRING and "\\\n" in leaf.value:
405 string_indices.append(idx)
406 # Advance to the next non-STRING leaf.
408 while is_valid_index(idx) and LL[idx].type == token.STRING:
415 return Ok(string_indices)
417 return TErr("This line has no strings that need merging.")
420 self, line: Line, string_indices: List[int]
421 ) -> Iterator[TResult[Line]]:
424 rblc_result = self._remove_backslash_line_continuation_chars(
425 new_line, string_indices
427 if isinstance(rblc_result, Ok):
428 new_line = rblc_result.ok()
430 msg_result = self._merge_string_group(new_line, string_indices)
431 if isinstance(msg_result, Ok):
432 new_line = msg_result.ok()
434 if isinstance(rblc_result, Err) and isinstance(msg_result, Err):
435 msg_cant_transform = msg_result.err()
436 rblc_cant_transform = rblc_result.err()
437 cant_transform = CannotTransform(
438 "StringMerger failed to merge any strings in this line."
441 # Chain the errors together using `__cause__`.
442 msg_cant_transform.__cause__ = rblc_cant_transform
443 cant_transform.__cause__ = msg_cant_transform
445 yield Err(cant_transform)
450 def _remove_backslash_line_continuation_chars(
451 line: Line, string_indices: List[int]
454 Merge strings that were split across multiple lines using
455 line-continuation backslashes.
458 Ok(new_line), if @line contains backslash line-continuation
461 Err(CannotTransform), otherwise.
465 indices_to_transform = []
466 for string_idx in string_indices:
467 string_leaf = LL[string_idx]
469 string_leaf.type == token.STRING
470 and "\\\n" in string_leaf.value
471 and not has_triple_quotes(string_leaf.value)
473 indices_to_transform.append(string_idx)
475 if not indices_to_transform:
477 "Found no string leaves that contain backslash line continuation"
481 new_line = line.clone()
482 new_line.comments = line.comments.copy()
483 append_leaves(new_line, line, LL)
485 for string_idx in indices_to_transform:
486 new_string_leaf = new_line.leaves[string_idx]
487 new_string_leaf.value = new_string_leaf.value.replace("\\\n", "")
491 def _merge_string_group(
492 self, line: Line, string_indices: List[int]
495 Merges string groups (i.e. set of adjacent strings).
497 Each index from `string_indices` designates one string group's first
498 leaf in `line.leaves`.
501 Ok(new_line), if ALL of the validation checks found in
502 _validate_msg(...) pass.
504 Err(CannotTransform), otherwise.
508 is_valid_index = is_valid_index_factory(LL)
510 # A dict of {string_idx: tuple[num_of_strings, string_leaf]}.
511 merged_string_idx_dict: Dict[int, Tuple[int, Leaf]] = {}
512 for string_idx in string_indices:
513 vresult = self._validate_msg(line, string_idx)
514 if isinstance(vresult, Err):
516 merged_string_idx_dict[string_idx] = self._merge_one_string_group(
517 LL, string_idx, is_valid_index
520 if not merged_string_idx_dict:
521 return TErr("No string group is merged")
523 # Build the final line ('new_line') that this method will later return.
524 new_line = line.clone()
525 previous_merged_string_idx = -1
526 previous_merged_num_of_strings = -1
527 for i, leaf in enumerate(LL):
528 if i in merged_string_idx_dict:
529 previous_merged_string_idx = i
530 previous_merged_num_of_strings, string_leaf = merged_string_idx_dict[i]
531 new_line.append(string_leaf)
534 previous_merged_string_idx
536 < previous_merged_string_idx + previous_merged_num_of_strings
538 for comment_leaf in line.comments_after(LL[i]):
539 new_line.append(comment_leaf, preformatted=True)
542 append_leaves(new_line, line, [leaf])
546 def _merge_one_string_group(
547 self, LL: List[Leaf], string_idx: int, is_valid_index: Callable[[int], bool]
548 ) -> Tuple[int, Leaf]:
550 Merges one string group where the first string in the group is
554 A tuple of `(num_of_strings, leaf)` where `num_of_strings` is the
555 number of strings merged and `leaf` is the newly merged string
556 to be replaced in the new line.
558 # If the string group is wrapped inside an Atom node, we must make sure
559 # to later replace that Atom with our new (merged) string leaf.
560 atom_node = LL[string_idx].parent
562 # We will place BREAK_MARK in between every two substrings that we
563 # merge. We will then later go through our final result and use the
564 # various instances of BREAK_MARK we find to add the right values to
565 # the custom split map.
566 BREAK_MARK = "@@@@@ BLACK BREAKPOINT MARKER @@@@@"
568 QUOTE = LL[string_idx].value[-1]
570 def make_naked(string: str, string_prefix: str) -> str:
571 """Strip @string (i.e. make it a "naked" string)
574 * assert_is_leaf_string(@string)
577 A string that is identical to @string except that
578 @string_prefix has been stripped, the surrounding QUOTE
579 characters have been removed, and any remaining QUOTE
580 characters have been escaped.
582 assert_is_leaf_string(string)
583 if "f" in string_prefix:
584 string = _toggle_fexpr_quotes(string, QUOTE)
585 # After quotes toggling, quotes in expressions won't be escaped
586 # because quotes can't be reused in f-strings. So we can simply
587 # let the escaping logic below run without knowing f-string
590 RE_EVEN_BACKSLASHES = r"(?:(?<!\\)(?:\\\\)*)"
591 naked_string = string[len(string_prefix) + 1 : -1]
592 naked_string = re.sub(
593 "(" + RE_EVEN_BACKSLASHES + ")" + QUOTE, r"\1\\" + QUOTE, naked_string
597 # Holds the CustomSplit objects that will later be added to the custom
601 # Temporary storage for the 'has_prefix' part of the CustomSplit objects.
604 # Sets the 'prefix' variable. This is the prefix that the final merged
606 next_str_idx = string_idx
610 and is_valid_index(next_str_idx)
611 and LL[next_str_idx].type == token.STRING
613 prefix = get_string_prefix(LL[next_str_idx].value).lower()
616 # The next loop merges the string group. The final string will be
619 # The following convenience variables are used:
624 # NSS: naked next string
628 next_str_idx = string_idx
629 while is_valid_index(next_str_idx) and LL[next_str_idx].type == token.STRING:
632 SS = LL[next_str_idx].value
633 next_prefix = get_string_prefix(SS).lower()
635 # If this is an f-string group but this substring is not prefixed
637 if "f" in prefix and "f" not in next_prefix:
638 # Then we must escape any braces contained in this substring.
639 SS = re.sub(r"(\{|\})", r"\1\1", SS)
641 NSS = make_naked(SS, next_prefix)
643 has_prefix = bool(next_prefix)
644 prefix_tracker.append(has_prefix)
646 S = prefix + QUOTE + NS + NSS + BREAK_MARK + QUOTE
647 NS = make_naked(S, prefix)
651 # Take a note on the index of the non-STRING leaf.
652 non_string_idx = next_str_idx
654 S_leaf = Leaf(token.STRING, S)
655 if self.normalize_strings:
656 S_leaf.value = normalize_string_quotes(S_leaf.value)
658 # Fill the 'custom_splits' list with the appropriate CustomSplit objects.
659 temp_string = S_leaf.value[len(prefix) + 1 : -1]
660 for has_prefix in prefix_tracker:
661 mark_idx = temp_string.find(BREAK_MARK)
664 ), "Logic error while filling the custom string breakpoint cache."
666 temp_string = temp_string[mark_idx + len(BREAK_MARK) :]
667 breakpoint_idx = mark_idx + (len(prefix) if has_prefix else 0) + 1
668 custom_splits.append(CustomSplit(has_prefix, breakpoint_idx))
670 string_leaf = Leaf(token.STRING, S_leaf.value.replace(BREAK_MARK, ""))
672 if atom_node is not None:
673 # If not all children of the atom node are merged (this can happen
674 # when there is a standalone comment in the middle) ...
675 if non_string_idx - string_idx < len(atom_node.children):
676 # We need to replace the old STRING leaves with the new string leaf.
677 first_child_idx = LL[string_idx].remove()
678 for idx in range(string_idx + 1, non_string_idx):
680 if first_child_idx is not None:
681 atom_node.insert_child(first_child_idx, string_leaf)
683 # Else replace the atom node with the new string leaf.
684 replace_child(atom_node, string_leaf)
686 self.add_custom_splits(string_leaf.value, custom_splits)
687 return num_of_strings, string_leaf
690 def _validate_msg(line: Line, string_idx: int) -> TResult[None]:
691 """Validate (M)erge (S)tring (G)roup
693 Transform-time string validation logic for _merge_string_group(...).
696 * Ok(None), if ALL validation checks (listed below) pass.
698 * Err(CannotTransform), if any of the following are true:
699 - The target string group does not contain ANY stand-alone comments.
700 - The target string is not in a string group (i.e. it has no
702 - The string group has more than one inline comment.
703 - The string group has an inline comment that appears to be a pragma.
704 - The set of all string prefixes in the string group is of
705 length greater than one and is not equal to {"", "f"}.
706 - The string group consists of raw strings.
707 - The string group is stringified type annotations. We don't want to
708 process stringified type annotations since pyright doesn't support
709 them spanning multiple string values. (NOTE: mypy, pytype, pyre do
710 support them, so we can change if pyright also gains support in the
711 future. See https://github.com/microsoft/pyright/issues/4359.)
713 # We first check for "inner" stand-alone comments (i.e. stand-alone
714 # comments that have a string leaf before them AND after them).
717 found_sa_comment = False
718 is_valid_index = is_valid_index_factory(line.leaves)
719 while is_valid_index(i) and line.leaves[i].type in [
723 if line.leaves[i].type == STANDALONE_COMMENT:
724 found_sa_comment = True
725 elif found_sa_comment:
727 "StringMerger does NOT merge string groups which contain "
728 "stand-alone comments."
733 num_of_inline_string_comments = 0
734 set_of_prefixes = set()
736 for leaf in line.leaves[string_idx:]:
737 if leaf.type != token.STRING:
738 # If the string group is trailed by a comma, we count the
739 # comments trailing the comma to be one of the string group's
741 if leaf.type == token.COMMA and id(leaf) in line.comments:
742 num_of_inline_string_comments += 1
745 if has_triple_quotes(leaf.value):
746 return TErr("StringMerger does NOT merge multiline strings.")
749 prefix = get_string_prefix(leaf.value).lower()
751 return TErr("StringMerger does NOT merge raw strings.")
753 set_of_prefixes.add(prefix)
755 if id(leaf) in line.comments:
756 num_of_inline_string_comments += 1
757 if contains_pragma_comment(line.comments[id(leaf)]):
758 return TErr("Cannot merge strings which have pragma comments.")
760 if num_of_strings < 2:
762 f"Not enough strings to merge (num_of_strings={num_of_strings})."
765 if num_of_inline_string_comments > 1:
767 f"Too many inline string comments ({num_of_inline_string_comments})."
770 if len(set_of_prefixes) > 1 and set_of_prefixes != {"", "f"}:
771 return TErr(f"Too many different prefixes ({set_of_prefixes}).")
776 class StringParenStripper(StringTransformer):
777 """StringTransformer that strips surrounding parentheses from strings.
780 The line contains a string which is surrounded by parentheses and:
781 - The target string is NOT the only argument to a function call.
782 - The target string is NOT a "pointless" string.
783 - If the target string contains a PERCENT, the brackets are not
784 preceded or followed by an operator with higher precedence than
788 The parentheses mentioned in the 'Requirements' section are stripped.
791 StringParenStripper has its own inherent usefulness, but it is also
792 relied on to clean up the parentheses created by StringParenWrapper (in
793 the event that they are no longer needed).
796 def do_match(self, line: Line) -> TMatchResult:
799 is_valid_index = is_valid_index_factory(LL)
810 # Should be a string...
811 if leaf.type != token.STRING:
814 # If this is a "pointless" string...
817 and leaf.parent.parent
818 and leaf.parent.parent.type == syms.simple_stmt
822 # Should be preceded by a non-empty LPAR...
824 not is_valid_index(idx - 1)
825 or LL[idx - 1].type != token.LPAR
826 or is_empty_lpar(LL[idx - 1])
830 # That LPAR should NOT be preceded by a function name or a closing
831 # bracket (which could be a function which returns a function or a
832 # list/dictionary that contains a function)...
833 if is_valid_index(idx - 2) and (
834 LL[idx - 2].type == token.NAME or LL[idx - 2].type in CLOSING_BRACKETS
840 # Skip the string trailer, if one exists.
841 string_parser = StringParser()
842 next_idx = string_parser.parse(LL, string_idx)
844 # if the leaves in the parsed string include a PERCENT, we need to
845 # make sure the initial LPAR is NOT preceded by an operator with
846 # higher or equal precedence to PERCENT
847 if is_valid_index(idx - 2):
848 # mypy can't quite follow unless we name this
849 before_lpar = LL[idx - 2]
850 if token.PERCENT in {leaf.type for leaf in LL[idx - 1 : next_idx]} and (
867 # only unary PLUS/MINUS
869 and before_lpar.parent.type == syms.factor
870 and (before_lpar.type in {token.PLUS, token.MINUS})
875 # Should be followed by a non-empty RPAR...
877 is_valid_index(next_idx)
878 and LL[next_idx].type == token.RPAR
879 and not is_empty_rpar(LL[next_idx])
881 # That RPAR should NOT be followed by anything with higher
882 # precedence than PERCENT
883 if is_valid_index(next_idx + 1) and LL[next_idx + 1].type in {
891 string_indices.append(string_idx)
893 while idx < len(LL) - 1 and LL[idx + 1].type == token.STRING:
897 return Ok(string_indices)
898 return TErr("This line has no strings wrapped in parens.")
901 self, line: Line, string_indices: List[int]
902 ) -> Iterator[TResult[Line]]:
905 string_and_rpar_indices: List[int] = []
906 for string_idx in string_indices:
907 string_parser = StringParser()
908 rpar_idx = string_parser.parse(LL, string_idx)
910 should_transform = True
911 for leaf in (LL[string_idx - 1], LL[rpar_idx]):
912 if line.comments_after(leaf):
913 # Should not strip parentheses which have comments attached
915 should_transform = False
918 string_and_rpar_indices.extend((string_idx, rpar_idx))
920 if string_and_rpar_indices:
921 yield Ok(self._transform_to_new_line(line, string_and_rpar_indices))
924 CannotTransform("All string groups have comments attached to them.")
927 def _transform_to_new_line(
928 self, line: Line, string_and_rpar_indices: List[int]
932 new_line = line.clone()
933 new_line.comments = line.comments.copy()
936 # We need to sort the indices, since string_idx and its matching
937 # rpar_idx may not come in order, e.g. in
938 # `("outer" % ("inner".join(items)))`, the "inner" string's
939 # string_idx is smaller than "outer" string's rpar_idx.
940 for idx in sorted(string_and_rpar_indices):
942 lpar_or_rpar_idx = idx - 1 if leaf.type == token.STRING else idx
943 append_leaves(new_line, line, LL[previous_idx + 1 : lpar_or_rpar_idx])
944 if leaf.type == token.STRING:
945 string_leaf = Leaf(token.STRING, LL[idx].value)
946 LL[lpar_or_rpar_idx].remove() # Remove lpar.
947 replace_child(LL[idx], string_leaf)
948 new_line.append(string_leaf)
950 LL[lpar_or_rpar_idx].remove() # This is a rpar.
954 # Append the leaves after the last idx:
955 append_leaves(new_line, line, LL[idx + 1 :])
960 class BaseStringSplitter(StringTransformer):
962 Abstract class for StringTransformers which transform a Line's strings by splitting
963 them or placing them on their own lines where necessary to avoid going over
964 the configured line length.
967 * The target string value is responsible for the line going over the
968 line length limit. It follows that after all of black's other line
969 split methods have been exhausted, this line (or one of the resulting
970 lines after all line splits are performed) would still be over the
971 line_length limit unless we split this string.
973 * The target string is NOT a "pointless" string (i.e. a string that has
974 no parent or siblings).
976 * The target string is not followed by an inline comment that appears
979 * The target string is not a multiline (i.e. triple-quote) string.
982 STRING_OPERATORS: Final = [
995 def do_splitter_match(self, line: Line) -> TMatchResult:
997 BaseStringSplitter asks its clients to override this method instead of
998 `StringTransformer.do_match(...)`.
1000 Follows the same protocol as `StringTransformer.do_match(...)`.
1002 Refer to `help(StringTransformer.do_match)` for more information.
1005 def do_match(self, line: Line) -> TMatchResult:
1006 match_result = self.do_splitter_match(line)
1007 if isinstance(match_result, Err):
1010 string_indices = match_result.ok()
1011 assert len(string_indices) == 1, (
1012 f"{self.__class__.__name__} should only find one match at a time, found"
1013 f" {len(string_indices)}"
1015 string_idx = string_indices[0]
1016 vresult = self._validate(line, string_idx)
1017 if isinstance(vresult, Err):
1022 def _validate(self, line: Line, string_idx: int) -> TResult[None]:
1024 Checks that @line meets all of the requirements listed in this classes'
1025 docstring. Refer to `help(BaseStringSplitter)` for a detailed
1026 description of those requirements.
1029 * Ok(None), if ALL of the requirements are met.
1031 * Err(CannotTransform), if ANY of the requirements are NOT met.
1035 string_leaf = LL[string_idx]
1037 max_string_length = self._get_max_string_length(line, string_idx)
1038 if len(string_leaf.value) <= max_string_length:
1040 "The string itself is not what is causing this line to be too long."
1043 if not string_leaf.parent or [L.type for L in string_leaf.parent.children] == [
1048 f"This string ({string_leaf.value}) appears to be pointless (i.e. has"
1052 if id(line.leaves[string_idx]) in line.comments and contains_pragma_comment(
1053 line.comments[id(line.leaves[string_idx])]
1056 "Line appears to end with an inline pragma comment. Splitting the line"
1057 " could modify the pragma's behavior."
1060 if has_triple_quotes(string_leaf.value):
1061 return TErr("We cannot split multiline strings.")
1065 def _get_max_string_length(self, line: Line, string_idx: int) -> int:
1067 Calculates the max string length used when attempting to determine
1068 whether or not the target string is responsible for causing the line to
1069 go over the line length limit.
1071 WARNING: This method is tightly coupled to both StringSplitter and
1072 (especially) StringParenWrapper. There is probably a better way to
1073 accomplish what is being done here.
1076 max_string_length: such that `line.leaves[string_idx].value >
1077 max_string_length` implies that the target string IS responsible
1078 for causing this line to exceed the line length limit.
1082 is_valid_index = is_valid_index_factory(LL)
1084 # We use the shorthand "WMA4" in comments to abbreviate "We must
1085 # account for". When giving examples, we use STRING to mean some/any
1088 # Finally, we use the following convenience variables:
1090 # P: The leaf that is before the target string leaf.
1091 # N: The leaf that is after the target string leaf.
1092 # NN: The leaf that is after N.
1094 # WMA4 the whitespace at the beginning of the line.
1095 offset = line.depth * 4
1097 if is_valid_index(string_idx - 1):
1098 p_idx = string_idx - 1
1100 LL[string_idx - 1].type == token.LPAR
1101 and LL[string_idx - 1].value == ""
1104 # If the previous leaf is an empty LPAR placeholder, we should skip it.
1108 if P.type in self.STRING_OPERATORS:
1109 # WMA4 a space and a string operator (e.g. `+ STRING` or `== STRING`).
1110 offset += len(str(P)) + 1
1112 if P.type == token.COMMA:
1113 # WMA4 a space, a comma, and a closing bracket [e.g. `), STRING`].
1116 if P.type in [token.COLON, token.EQUAL, token.PLUSEQUAL, token.NAME]:
1117 # This conditional branch is meant to handle dictionary keys,
1118 # variable assignments, 'return STRING' statement lines, and
1119 # 'else STRING' ternary expression lines.
1121 # WMA4 a single space.
1124 # WMA4 the lengths of any leaves that came before that space,
1125 # but after any closing bracket before that space.
1126 for leaf in reversed(LL[: p_idx + 1]):
1127 offset += len(str(leaf))
1128 if leaf.type in CLOSING_BRACKETS:
1131 if is_valid_index(string_idx + 1):
1132 N = LL[string_idx + 1]
1133 if N.type == token.RPAR and N.value == "" and len(LL) > string_idx + 2:
1134 # If the next leaf is an empty RPAR placeholder, we should skip it.
1135 N = LL[string_idx + 2]
1137 if N.type == token.COMMA:
1138 # WMA4 a single comma at the end of the string (e.g `STRING,`).
1141 if is_valid_index(string_idx + 2):
1142 NN = LL[string_idx + 2]
1144 if N.type == token.DOT and NN.type == token.NAME:
1145 # This conditional branch is meant to handle method calls invoked
1146 # off of a string literal up to and including the LPAR character.
1148 # WMA4 the '.' character.
1152 is_valid_index(string_idx + 3)
1153 and LL[string_idx + 3].type == token.LPAR
1155 # WMA4 the left parenthesis character.
1158 # WMA4 the length of the method's name.
1159 offset += len(NN.value)
1161 has_comments = False
1162 for comment_leaf in line.comments_after(LL[string_idx]):
1163 if not has_comments:
1165 # WMA4 two spaces before the '#' character.
1168 # WMA4 the length of the inline comment.
1169 offset += len(comment_leaf.value)
1171 max_string_length = count_chars_in_width(str(line), self.line_length - offset)
1172 return max_string_length
1175 def _prefer_paren_wrap_match(LL: List[Leaf]) -> Optional[int]:
1178 string_idx such that @LL[string_idx] is equal to our target (i.e.
1179 matched) string, if this line matches the "prefer paren wrap" statement
1180 requirements listed in the 'Requirements' section of the StringParenWrapper
1185 # The line must start with a string.
1186 if LL[0].type != token.STRING:
1194 # If the string is an immediate child of a list/set/tuple literal...
1196 parent_type(LL[0]) in matching_nodes
1197 or parent_type(LL[0].parent) in matching_nodes
1199 # And the string is surrounded by commas (or is the first/last child)...
1200 prev_sibling = LL[0].prev_sibling
1201 next_sibling = LL[0].next_sibling
1204 and not next_sibling
1205 and parent_type(LL[0]) == syms.atom
1207 # If it's an atom string, we need to check the parent atom's siblings.
1208 parent = LL[0].parent
1209 assert parent is not None # For type checkers.
1210 prev_sibling = parent.prev_sibling
1211 next_sibling = parent.next_sibling
1212 if (not prev_sibling or prev_sibling.type == token.COMMA) and (
1213 not next_sibling or next_sibling.type == token.COMMA
1220 def iter_fexpr_spans(s: str) -> Iterator[Tuple[int, int]]:
1222 Yields spans corresponding to expressions in a given f-string.
1223 Spans are half-open ranges (left inclusive, right exclusive).
1224 Assumes the input string is a valid f-string, but will not crash if the input
1227 stack: List[int] = [] # our curly paren stack
1231 # if we're in a string part of the f-string, ignore escaped curly braces
1232 if not stack and i + 1 < len(s) and s[i + 1] == "{":
1244 # we've made it back out of the expression! yield the span
1250 # if we're in an expression part of the f-string, fast forward through strings
1251 # note that backslashes are not legal in the expression portion of f-strings
1254 if s[i : i + 3] in ("'''", '"""'):
1255 delim = s[i : i + 3]
1256 elif s[i] in ("'", '"'):
1260 while i < len(s) and s[i : i + len(delim)] != delim:
1267 def fstring_contains_expr(s: str) -> bool:
1268 return any(iter_fexpr_spans(s))
1271 def _toggle_fexpr_quotes(fstring: str, old_quote: str) -> str:
1273 Toggles quotes used in f-string expressions that are `old_quote`.
1275 f-string expressions can't contain backslashes, so we need to toggle the
1276 quotes if the f-string itself will end up using the same quote. We can
1277 simply toggle without escaping because, quotes can't be reused in f-string
1278 expressions. They will fail to parse.
1280 NOTE: If PEP 701 is accepted, above statement will no longer be true.
1281 Though if quotes can be reused, we can simply reuse them without updates or
1282 escaping, once Black figures out how to parse the new grammar.
1284 new_quote = "'" if old_quote == '"' else '"'
1287 for start, end in iter_fexpr_spans(fstring):
1288 parts.append(fstring[previous_index:start])
1289 parts.append(fstring[start:end].replace(old_quote, new_quote))
1290 previous_index = end
1291 parts.append(fstring[previous_index:])
1292 return "".join(parts)
1295 class StringSplitter(BaseStringSplitter, CustomSplitMapMixin):
1297 StringTransformer that splits "atom" strings (i.e. strings which exist on
1298 lines by themselves).
1301 * The line consists ONLY of a single string (possibly prefixed by a
1302 string operator [e.g. '+' or '==']), MAYBE a string trailer, and MAYBE
1305 * All of the requirements listed in BaseStringSplitter's docstring.
1308 The string mentioned in the 'Requirements' section is split into as
1309 many substrings as necessary to adhere to the configured line length.
1311 In the final set of substrings, no substring should be smaller than
1312 MIN_SUBSTR_SIZE characters.
1314 The string will ONLY be split on spaces (i.e. each new substring should
1315 start with a space). Note that the string will NOT be split on a space
1316 which is escaped with a backslash.
1318 If the string is an f-string, it will NOT be split in the middle of an
1319 f-expression (e.g. in f"FooBar: {foo() if x else bar()}", {foo() if x
1320 else bar()} is an f-expression).
1322 If the string that is being split has an associated set of custom split
1323 records and those custom splits will NOT result in any line going over
1324 the configured line length, those custom splits are used. Otherwise the
1325 string is split as late as possible (from left-to-right) while still
1326 adhering to the transformation rules listed above.
1329 StringSplitter relies on StringMerger to construct the appropriate
1330 CustomSplit objects and add them to the custom split map.
1333 MIN_SUBSTR_SIZE: Final = 6
1335 def do_splitter_match(self, line: Line) -> TMatchResult:
1338 if self._prefer_paren_wrap_match(LL) is not None:
1339 return TErr("Line needs to be wrapped in parens first.")
1341 is_valid_index = is_valid_index_factory(LL)
1345 # The first two leaves MAY be the 'not in' keywords...
1348 and is_valid_index(idx + 1)
1349 and [LL[idx].type, LL[idx + 1].type] == [token.NAME, token.NAME]
1350 and str(LL[idx]) + str(LL[idx + 1]) == "not in"
1353 # Else the first leaf MAY be a string operator symbol or the 'in' keyword...
1354 elif is_valid_index(idx) and (
1355 LL[idx].type in self.STRING_OPERATORS
1356 or LL[idx].type == token.NAME
1357 and str(LL[idx]) == "in"
1361 # The next/first leaf MAY be an empty LPAR...
1362 if is_valid_index(idx) and is_empty_lpar(LL[idx]):
1365 # The next/first leaf MUST be a string...
1366 if not is_valid_index(idx) or LL[idx].type != token.STRING:
1367 return TErr("Line does not start with a string.")
1371 # Skip the string trailer, if one exists.
1372 string_parser = StringParser()
1373 idx = string_parser.parse(LL, string_idx)
1375 # That string MAY be followed by an empty RPAR...
1376 if is_valid_index(idx) and is_empty_rpar(LL[idx]):
1379 # That string / empty RPAR leaf MAY be followed by a comma...
1380 if is_valid_index(idx) and LL[idx].type == token.COMMA:
1383 # But no more leaves are allowed...
1384 if is_valid_index(idx):
1385 return TErr("This line does not end with a string.")
1387 return Ok([string_idx])
1390 self, line: Line, string_indices: List[int]
1391 ) -> Iterator[TResult[Line]]:
1393 assert len(string_indices) == 1, (
1394 f"{self.__class__.__name__} should only find one match at a time, found"
1395 f" {len(string_indices)}"
1397 string_idx = string_indices[0]
1399 QUOTE = LL[string_idx].value[-1]
1401 is_valid_index = is_valid_index_factory(LL)
1402 insert_str_child = insert_str_child_factory(LL[string_idx])
1404 prefix = get_string_prefix(LL[string_idx].value).lower()
1406 # We MAY choose to drop the 'f' prefix from substrings that don't
1407 # contain any f-expressions, but ONLY if the original f-string
1408 # contains at least one f-expression. Otherwise, we will alter the AST
1410 drop_pointless_f_prefix = ("f" in prefix) and fstring_contains_expr(
1411 LL[string_idx].value
1414 first_string_line = True
1416 string_op_leaves = self._get_string_operator_leaves(LL)
1417 string_op_leaves_length = (
1418 sum(len(str(prefix_leaf)) for prefix_leaf in string_op_leaves) + 1
1423 def maybe_append_string_operators(new_line: Line) -> None:
1426 If @line starts with a string operator and this is the first
1427 line we are constructing, this function appends the string
1428 operator to @new_line and replaces the old string operator leaf
1429 in the node structure. Otherwise this function does nothing.
1431 maybe_prefix_leaves = string_op_leaves if first_string_line else []
1432 for i, prefix_leaf in enumerate(maybe_prefix_leaves):
1433 replace_child(LL[i], prefix_leaf)
1434 new_line.append(prefix_leaf)
1437 is_valid_index(string_idx + 1) and LL[string_idx + 1].type == token.COMMA
1440 def max_last_string_column() -> int:
1443 The max allowed width of the string value used for the last
1444 line we will construct. Note that this value means the width
1445 rather than the number of characters (e.g., many East Asian
1446 characters expand to two columns).
1448 result = self.line_length
1449 result -= line.depth * 4
1450 result -= 1 if ends_with_comma else 0
1451 result -= string_op_leaves_length
1454 # --- Calculate Max Break Width (for string value)
1455 # We start with the line length limit
1456 max_break_width = self.line_length
1457 # The last index of a string of length N is N-1.
1458 max_break_width -= 1
1459 # Leading whitespace is not present in the string value (e.g. Leaf.value).
1460 max_break_width -= line.depth * 4
1461 if max_break_width < 0:
1463 f"Unable to split {LL[string_idx].value} at such high of a line depth:"
1468 # Check if StringMerger registered any custom splits.
1469 custom_splits = self.pop_custom_splits(LL[string_idx].value)
1470 # We use them ONLY if none of them would produce lines that exceed the
1472 use_custom_breakpoints = bool(
1474 and all(csplit.break_idx <= max_break_width for csplit in custom_splits)
1477 # Temporary storage for the remaining chunk of the string line that
1478 # can't fit onto the line currently being constructed.
1479 rest_value = LL[string_idx].value
1481 def more_splits_should_be_made() -> bool:
1484 True iff `rest_value` (the remaining string value from the last
1485 split), should be split again.
1487 if use_custom_breakpoints:
1488 return len(custom_splits) > 1
1490 return str_width(rest_value) > max_last_string_column()
1492 string_line_results: List[Ok[Line]] = []
1493 while more_splits_should_be_made():
1494 if use_custom_breakpoints:
1495 # Custom User Split (manual)
1496 csplit = custom_splits.pop(0)
1497 break_idx = csplit.break_idx
1499 # Algorithmic Split (automatic)
1501 count_chars_in_width(rest_value, max_break_width)
1502 - string_op_leaves_length
1504 maybe_break_idx = self._get_break_idx(rest_value, max_bidx)
1505 if maybe_break_idx is None:
1506 # If we are unable to algorithmically determine a good split
1507 # and this string has custom splits registered to it, we
1508 # fall back to using them--which means we have to start
1509 # over from the beginning.
1511 rest_value = LL[string_idx].value
1512 string_line_results = []
1513 first_string_line = True
1514 use_custom_breakpoints = True
1517 # Otherwise, we stop splitting here.
1520 break_idx = maybe_break_idx
1522 # --- Construct `next_value`
1523 next_value = rest_value[:break_idx] + QUOTE
1525 # HACK: The following 'if' statement is a hack to fix the custom
1526 # breakpoint index in the case of either: (a) substrings that were
1527 # f-strings but will have the 'f' prefix removed OR (b) substrings
1528 # that were not f-strings but will now become f-strings because of
1529 # redundant use of the 'f' prefix (i.e. none of the substrings
1530 # contain f-expressions but one or more of them had the 'f' prefix
1531 # anyway; in which case, we will prepend 'f' to _all_ substrings).
1533 # There is probably a better way to accomplish what is being done
1536 # If this substring is an f-string, we _could_ remove the 'f'
1537 # prefix, and the current custom split did NOT originally use a
1540 use_custom_breakpoints
1541 and not csplit.has_prefix
1543 # `next_value == prefix + QUOTE` happens when the custom
1544 # split is an empty string.
1545 next_value == prefix + QUOTE
1546 or next_value != self._normalize_f_string(next_value, prefix)
1549 # Then `csplit.break_idx` will be off by one after removing
1552 next_value = rest_value[:break_idx] + QUOTE
1554 if drop_pointless_f_prefix:
1555 next_value = self._normalize_f_string(next_value, prefix)
1557 # --- Construct `next_leaf`
1558 next_leaf = Leaf(token.STRING, next_value)
1559 insert_str_child(next_leaf)
1560 self._maybe_normalize_string_quotes(next_leaf)
1562 # --- Construct `next_line`
1563 next_line = line.clone()
1564 maybe_append_string_operators(next_line)
1565 next_line.append(next_leaf)
1566 string_line_results.append(Ok(next_line))
1568 rest_value = prefix + QUOTE + rest_value[break_idx:]
1569 first_string_line = False
1571 yield from string_line_results
1573 if drop_pointless_f_prefix:
1574 rest_value = self._normalize_f_string(rest_value, prefix)
1576 rest_leaf = Leaf(token.STRING, rest_value)
1577 insert_str_child(rest_leaf)
1579 # NOTE: I could not find a test case that verifies that the following
1580 # line is actually necessary, but it seems to be. Otherwise we risk
1581 # not normalizing the last substring, right?
1582 self._maybe_normalize_string_quotes(rest_leaf)
1584 last_line = line.clone()
1585 maybe_append_string_operators(last_line)
1587 # If there are any leaves to the right of the target string...
1588 if is_valid_index(string_idx + 1):
1589 # We use `temp_value` here to determine how long the last line
1590 # would be if we were to append all the leaves to the right of the
1591 # target string to the last string line.
1592 temp_value = rest_value
1593 for leaf in LL[string_idx + 1 :]:
1594 temp_value += str(leaf)
1595 if leaf.type == token.LPAR:
1598 # Try to fit them all on the same line with the last substring...
1600 str_width(temp_value) <= max_last_string_column()
1601 or LL[string_idx + 1].type == token.COMMA
1603 last_line.append(rest_leaf)
1604 append_leaves(last_line, line, LL[string_idx + 1 :])
1606 # Otherwise, place the last substring on one line and everything
1607 # else on a line below that...
1609 last_line.append(rest_leaf)
1612 non_string_line = line.clone()
1613 append_leaves(non_string_line, line, LL[string_idx + 1 :])
1614 yield Ok(non_string_line)
1615 # Else the target string was the last leaf...
1617 last_line.append(rest_leaf)
1618 last_line.comments = line.comments.copy()
1621 def _iter_nameescape_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
1624 All ranges of @string which, if @string were to be split there,
1625 would result in the splitting of an \\N{...} expression (which is NOT
1628 # True - the previous backslash was unescaped
1629 # False - the previous backslash was escaped *or* there was no backslash
1630 previous_was_unescaped_backslash = False
1631 it = iter(enumerate(string))
1634 previous_was_unescaped_backslash = not previous_was_unescaped_backslash
1636 if not previous_was_unescaped_backslash or c != "N":
1637 previous_was_unescaped_backslash = False
1639 previous_was_unescaped_backslash = False
1641 begin = idx - 1 # the position of backslash before \N{...}
1647 # malformed nameescape expression?
1648 # should have been detected by AST parsing earlier...
1649 raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
1652 def _iter_fexpr_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
1655 All ranges of @string which, if @string were to be split there,
1656 would result in the splitting of an f-expression (which is NOT
1659 if "f" not in get_string_prefix(string).lower():
1661 yield from iter_fexpr_spans(string)
1663 def _get_illegal_split_indices(self, string: str) -> Set[Index]:
1664 illegal_indices: Set[Index] = set()
1666 self._iter_fexpr_slices(string),
1667 self._iter_nameescape_slices(string),
1669 for it in iterators:
1670 for begin, end in it:
1671 illegal_indices.update(range(begin, end + 1))
1672 return illegal_indices
1674 def _get_break_idx(self, string: str, max_break_idx: int) -> Optional[int]:
1676 This method contains the algorithm that StringSplitter uses to
1677 determine which character to split each string at.
1680 @string: The substring that we are attempting to split.
1681 @max_break_idx: The ideal break index. We will return this value if it
1682 meets all the necessary conditions. In the likely event that it
1683 doesn't we will try to find the closest index BELOW @max_break_idx
1684 that does. If that fails, we will expand our search by also
1685 considering all valid indices ABOVE @max_break_idx.
1688 * assert_is_leaf_string(@string)
1689 * 0 <= @max_break_idx < len(@string)
1692 break_idx, if an index is able to be found that meets all of the
1693 conditions listed in the 'Transformations' section of this classes'
1698 is_valid_index = is_valid_index_factory(string)
1700 assert is_valid_index(max_break_idx)
1701 assert_is_leaf_string(string)
1703 _illegal_split_indices = self._get_illegal_split_indices(string)
1705 def breaks_unsplittable_expression(i: Index) -> bool:
1708 True iff returning @i would result in the splitting of an
1709 unsplittable expression (which is NOT allowed).
1711 return i in _illegal_split_indices
1713 def passes_all_checks(i: Index) -> bool:
1716 True iff ALL of the conditions listed in the 'Transformations'
1717 section of this classes' docstring would be be met by returning @i.
1719 is_space = string[i] == " "
1720 is_split_safe = is_valid_index(i - 1) and string[i - 1] in SPLIT_SAFE_CHARS
1722 is_not_escaped = True
1724 while is_valid_index(j) and string[j] == "\\":
1725 is_not_escaped = not is_not_escaped
1729 len(string[i:]) >= self.MIN_SUBSTR_SIZE
1730 and len(string[:i]) >= self.MIN_SUBSTR_SIZE
1733 (is_space or is_split_safe)
1736 and not breaks_unsplittable_expression(i)
1739 # First, we check all indices BELOW @max_break_idx.
1740 break_idx = max_break_idx
1741 while is_valid_index(break_idx - 1) and not passes_all_checks(break_idx):
1744 if not passes_all_checks(break_idx):
1745 # If that fails, we check all indices ABOVE @max_break_idx.
1747 # If we are able to find a valid index here, the next line is going
1748 # to be longer than the specified line length, but it's probably
1749 # better than doing nothing at all.
1750 break_idx = max_break_idx + 1
1751 while is_valid_index(break_idx + 1) and not passes_all_checks(break_idx):
1754 if not is_valid_index(break_idx) or not passes_all_checks(break_idx):
1759 def _maybe_normalize_string_quotes(self, leaf: Leaf) -> None:
1760 if self.normalize_strings:
1761 leaf.value = normalize_string_quotes(leaf.value)
1763 def _normalize_f_string(self, string: str, prefix: str) -> str:
1766 * assert_is_leaf_string(@string)
1769 * If @string is an f-string that contains no f-expressions, we
1770 return a string identical to @string except that the 'f' prefix
1771 has been stripped and all double braces (i.e. '{{' or '}}') have
1772 been normalized (i.e. turned into '{' or '}').
1774 * Otherwise, we return @string.
1776 assert_is_leaf_string(string)
1778 if "f" in prefix and not fstring_contains_expr(string):
1779 new_prefix = prefix.replace("f", "")
1781 temp = string[len(prefix) :]
1782 temp = re.sub(r"\{\{", "{", temp)
1783 temp = re.sub(r"\}\}", "}", temp)
1786 return f"{new_prefix}{new_string}"
1790 def _get_string_operator_leaves(self, leaves: Iterable[Leaf]) -> List[Leaf]:
1793 string_op_leaves = []
1795 while LL[i].type in self.STRING_OPERATORS + [token.NAME]:
1796 prefix_leaf = Leaf(LL[i].type, str(LL[i]).strip())
1797 string_op_leaves.append(prefix_leaf)
1799 return string_op_leaves
1802 class StringParenWrapper(BaseStringSplitter, CustomSplitMapMixin):
1804 StringTransformer that wraps strings in parens and then splits at the LPAR.
1807 All of the requirements listed in BaseStringSplitter's docstring in
1808 addition to the requirements listed below:
1810 * The line is a return/yield statement, which returns/yields a string.
1812 * The line is part of a ternary expression (e.g. `x = y if cond else
1813 z`) such that the line starts with `else <string>`, where <string> is
1816 * The line is an assert statement, which ends with a string.
1818 * The line is an assignment statement (e.g. `x = <string>` or `x +=
1819 <string>`) such that the variable is being assigned the value of some
1822 * The line is a dictionary key assignment where some valid key is being
1823 assigned the value of some string.
1825 * The line is an lambda expression and the value is a string.
1827 * The line starts with an "atom" string that prefers to be wrapped in
1828 parens. It's preferred to be wrapped when it's is an immediate child of
1829 a list/set/tuple literal, AND the string is surrounded by commas (or is
1830 the first/last child).
1833 The chosen string is wrapped in parentheses and then split at the LPAR.
1835 We then have one line which ends with an LPAR and another line that
1836 starts with the chosen string. The latter line is then split again at
1837 the RPAR. This results in the RPAR (and possibly a trailing comma)
1838 being placed on its own line.
1840 NOTE: If any leaves exist to the right of the chosen string (except
1841 for a trailing comma, which would be placed after the RPAR), those
1842 leaves are placed inside the parentheses. In effect, the chosen
1843 string is not necessarily being "wrapped" by parentheses. We can,
1844 however, count on the LPAR being placed directly before the chosen
1847 In other words, StringParenWrapper creates "atom" strings. These
1848 can then be split again by StringSplitter, if necessary.
1851 In the event that a string line split by StringParenWrapper is
1852 changed such that it no longer needs to be given its own line,
1853 StringParenWrapper relies on StringParenStripper to clean up the
1854 parentheses it created.
1856 For "atom" strings that prefers to be wrapped in parens, it requires
1857 StringSplitter to hold the split until the string is wrapped in parens.
1860 def do_splitter_match(self, line: Line) -> TMatchResult:
1863 if line.leaves[-1].type in OPENING_BRACKETS:
1865 "Cannot wrap parens around a line that ends in an opening bracket."
1869 self._return_match(LL)
1870 or self._else_match(LL)
1871 or self._assert_match(LL)
1872 or self._assign_match(LL)
1873 or self._dict_or_lambda_match(LL)
1874 or self._prefer_paren_wrap_match(LL)
1877 if string_idx is not None:
1878 string_value = line.leaves[string_idx].value
1879 # If the string has neither spaces nor East Asian stops...
1881 char == " " or char in SPLIT_SAFE_CHARS for char in string_value
1883 # And will still violate the line length limit when split...
1884 max_string_width = self.line_length - ((line.depth + 1) * 4)
1885 if str_width(string_value) > max_string_width:
1886 # And has no associated custom splits...
1887 if not self.has_custom_splits(string_value):
1888 # Then we should NOT put this string on its own line.
1890 "We do not wrap long strings in parentheses when the"
1891 " resultant line would still be over the specified line"
1892 " length and can't be split further by StringSplitter."
1894 return Ok([string_idx])
1896 return TErr("This line does not contain any non-atomic strings.")
1899 def _return_match(LL: List[Leaf]) -> Optional[int]:
1902 string_idx such that @LL[string_idx] is equal to our target (i.e.
1903 matched) string, if this line matches the return/yield statement
1904 requirements listed in the 'Requirements' section of this classes'
1909 # If this line is apart of a return/yield statement and the first leaf
1910 # contains either the "return" or "yield" keywords...
1911 if parent_type(LL[0]) in [syms.return_stmt, syms.yield_expr] and LL[
1913 ].value in ["return", "yield"]:
1914 is_valid_index = is_valid_index_factory(LL)
1916 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1917 # The next visible leaf MUST contain a string...
1918 if is_valid_index(idx) and LL[idx].type == token.STRING:
1924 def _else_match(LL: List[Leaf]) -> Optional[int]:
1927 string_idx such that @LL[string_idx] is equal to our target (i.e.
1928 matched) string, if this line matches the ternary expression
1929 requirements listed in the 'Requirements' section of this classes'
1934 # If this line is apart of a ternary expression and the first leaf
1935 # contains the "else" keyword...
1937 parent_type(LL[0]) == syms.test
1938 and LL[0].type == token.NAME
1939 and LL[0].value == "else"
1941 is_valid_index = is_valid_index_factory(LL)
1943 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1944 # The next visible leaf MUST contain a string...
1945 if is_valid_index(idx) and LL[idx].type == token.STRING:
1951 def _assert_match(LL: List[Leaf]) -> Optional[int]:
1954 string_idx such that @LL[string_idx] is equal to our target (i.e.
1955 matched) string, if this line matches the assert statement
1956 requirements listed in the 'Requirements' section of this classes'
1961 # If this line is apart of an assert statement and the first leaf
1962 # contains the "assert" keyword...
1963 if parent_type(LL[0]) == syms.assert_stmt and LL[0].value == "assert":
1964 is_valid_index = is_valid_index_factory(LL)
1966 for i, leaf in enumerate(LL):
1967 # We MUST find a comma...
1968 if leaf.type == token.COMMA:
1969 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1971 # That comma MUST be followed by a string...
1972 if is_valid_index(idx) and LL[idx].type == token.STRING:
1975 # Skip the string trailer, if one exists.
1976 string_parser = StringParser()
1977 idx = string_parser.parse(LL, string_idx)
1979 # But no more leaves are allowed...
1980 if not is_valid_index(idx):
1986 def _assign_match(LL: List[Leaf]) -> Optional[int]:
1989 string_idx such that @LL[string_idx] is equal to our target (i.e.
1990 matched) string, if this line matches the assignment statement
1991 requirements listed in the 'Requirements' section of this classes'
1996 # If this line is apart of an expression statement or is a function
1997 # argument AND the first leaf contains a variable name...
1999 parent_type(LL[0]) in [syms.expr_stmt, syms.argument, syms.power]
2000 and LL[0].type == token.NAME
2002 is_valid_index = is_valid_index_factory(LL)
2004 for i, leaf in enumerate(LL):
2005 # We MUST find either an '=' or '+=' symbol...
2006 if leaf.type in [token.EQUAL, token.PLUSEQUAL]:
2007 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
2009 # That symbol MUST be followed by a string...
2010 if is_valid_index(idx) and LL[idx].type == token.STRING:
2013 # Skip the string trailer, if one exists.
2014 string_parser = StringParser()
2015 idx = string_parser.parse(LL, string_idx)
2017 # The next leaf MAY be a comma iff this line is apart
2018 # of a function argument...
2020 parent_type(LL[0]) == syms.argument
2021 and is_valid_index(idx)
2022 and LL[idx].type == token.COMMA
2026 # But no more leaves are allowed...
2027 if not is_valid_index(idx):
2033 def _dict_or_lambda_match(LL: List[Leaf]) -> Optional[int]:
2036 string_idx such that @LL[string_idx] is equal to our target (i.e.
2037 matched) string, if this line matches the dictionary key assignment
2038 statement or lambda expression requirements listed in the
2039 'Requirements' section of this classes' docstring.
2043 # If this line is a part of a dictionary key assignment or lambda expression...
2044 parent_types = [parent_type(LL[0]), parent_type(LL[0].parent)]
2045 if syms.dictsetmaker in parent_types or syms.lambdef in parent_types:
2046 is_valid_index = is_valid_index_factory(LL)
2048 for i, leaf in enumerate(LL):
2049 # We MUST find a colon, it can either be dict's or lambda's colon...
2050 if leaf.type == token.COLON and i < len(LL) - 1:
2051 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
2053 # That colon MUST be followed by a string...
2054 if is_valid_index(idx) and LL[idx].type == token.STRING:
2057 # Skip the string trailer, if one exists.
2058 string_parser = StringParser()
2059 idx = string_parser.parse(LL, string_idx)
2061 # That string MAY be followed by a comma...
2062 if is_valid_index(idx) and LL[idx].type == token.COMMA:
2065 # But no more leaves are allowed...
2066 if not is_valid_index(idx):
2072 self, line: Line, string_indices: List[int]
2073 ) -> Iterator[TResult[Line]]:
2075 assert len(string_indices) == 1, (
2076 f"{self.__class__.__name__} should only find one match at a time, found"
2077 f" {len(string_indices)}"
2079 string_idx = string_indices[0]
2081 is_valid_index = is_valid_index_factory(LL)
2082 insert_str_child = insert_str_child_factory(LL[string_idx])
2085 ends_with_comma = False
2086 if LL[comma_idx].type == token.COMMA:
2087 ends_with_comma = True
2089 leaves_to_steal_comments_from = [LL[string_idx]]
2091 leaves_to_steal_comments_from.append(LL[comma_idx])
2094 first_line = line.clone()
2095 left_leaves = LL[:string_idx]
2097 # We have to remember to account for (possibly invisible) LPAR and RPAR
2098 # leaves that already wrapped the target string. If these leaves do
2099 # exist, we will replace them with our own LPAR and RPAR leaves.
2100 old_parens_exist = False
2101 if left_leaves and left_leaves[-1].type == token.LPAR:
2102 old_parens_exist = True
2103 leaves_to_steal_comments_from.append(left_leaves[-1])
2106 append_leaves(first_line, line, left_leaves)
2108 lpar_leaf = Leaf(token.LPAR, "(")
2109 if old_parens_exist:
2110 replace_child(LL[string_idx - 1], lpar_leaf)
2112 insert_str_child(lpar_leaf)
2113 first_line.append(lpar_leaf)
2115 # We throw inline comments that were originally to the right of the
2116 # target string to the top line. They will now be shown to the right of
2118 for leaf in leaves_to_steal_comments_from:
2119 for comment_leaf in line.comments_after(leaf):
2120 first_line.append(comment_leaf, preformatted=True)
2122 yield Ok(first_line)
2124 # --- Middle (String) Line
2125 # We only need to yield one (possibly too long) string line, since the
2126 # `StringSplitter` will break it down further if necessary.
2127 string_value = LL[string_idx].value
2130 depth=line.depth + 1,
2131 inside_brackets=True,
2132 should_split_rhs=line.should_split_rhs,
2133 magic_trailing_comma=line.magic_trailing_comma,
2135 string_leaf = Leaf(token.STRING, string_value)
2136 insert_str_child(string_leaf)
2137 string_line.append(string_leaf)
2139 old_rpar_leaf = None
2140 if is_valid_index(string_idx + 1):
2141 right_leaves = LL[string_idx + 1 :]
2145 if old_parens_exist:
2146 assert right_leaves and right_leaves[-1].type == token.RPAR, (
2147 "Apparently, old parentheses do NOT exist?!"
2148 f" (left_leaves={left_leaves}, right_leaves={right_leaves})"
2150 old_rpar_leaf = right_leaves.pop()
2151 elif right_leaves and right_leaves[-1].type == token.RPAR:
2152 # Special case for lambda expressions as dict's value, e.g.:
2154 # "key": lambda x: f"formatted: {x},
2156 # After wrapping the dict's value with parentheses, the string is
2157 # followed by a RPAR but its opening bracket is lambda's, not
2159 # "key": (lambda x: f"formatted: {x}),
2160 opening_bracket = right_leaves[-1].opening_bracket
2161 if opening_bracket is not None and opening_bracket in left_leaves:
2162 index = left_leaves.index(opening_bracket)
2165 and index < len(left_leaves) - 1
2166 and left_leaves[index - 1].type == token.COLON
2167 and left_leaves[index + 1].value == "lambda"
2171 append_leaves(string_line, line, right_leaves)
2173 yield Ok(string_line)
2176 last_line = line.clone()
2177 last_line.bracket_tracker = first_line.bracket_tracker
2179 new_rpar_leaf = Leaf(token.RPAR, ")")
2180 if old_rpar_leaf is not None:
2181 replace_child(old_rpar_leaf, new_rpar_leaf)
2183 insert_str_child(new_rpar_leaf)
2184 last_line.append(new_rpar_leaf)
2186 # If the target string ended with a comma, we place this comma to the
2187 # right of the RPAR on the last line.
2189 comma_leaf = Leaf(token.COMMA, ",")
2190 replace_child(LL[comma_idx], comma_leaf)
2191 last_line.append(comma_leaf)
2198 A state machine that aids in parsing a string's "trailer", which can be
2199 either non-existent, an old-style formatting sequence (e.g. `% varX` or `%
2200 (varX, varY)`), or a method-call / attribute access (e.g. `.format(varX,
2203 NOTE: A new StringParser object MUST be instantiated for each string
2204 trailer we need to parse.
2207 We shall assume that `line` equals the `Line` object that corresponds
2208 to the following line of python code:
2210 x = "Some {}.".format("String") + some_other_string
2213 Furthermore, we will assume that `string_idx` is some index such that:
2215 assert line.leaves[string_idx].value == "Some {}."
2218 The following code snippet then holds:
2220 string_parser = StringParser()
2221 idx = string_parser.parse(line.leaves, string_idx)
2222 assert line.leaves[idx].type == token.PLUS
2226 DEFAULT_TOKEN: Final = 20210605
2228 # String Parser States
2233 SINGLE_FMT_ARG: Final = 5
2238 # Lookup Table for Next State
2239 _goto: Final[Dict[Tuple[ParserState, NodeType], ParserState]] = {
2240 # A string trailer may start with '.' OR '%'.
2241 (START, token.DOT): DOT,
2242 (START, token.PERCENT): PERCENT,
2243 (START, DEFAULT_TOKEN): DONE,
2244 # A '.' MUST be followed by an attribute or method name.
2245 (DOT, token.NAME): NAME,
2246 # A method name MUST be followed by an '(', whereas an attribute name
2247 # is the last symbol in the string trailer.
2248 (NAME, token.LPAR): LPAR,
2249 (NAME, DEFAULT_TOKEN): DONE,
2250 # A '%' symbol can be followed by an '(' or a single argument (e.g. a
2251 # string or variable name).
2252 (PERCENT, token.LPAR): LPAR,
2253 (PERCENT, DEFAULT_TOKEN): SINGLE_FMT_ARG,
2254 # If a '%' symbol is followed by a single argument, that argument is
2255 # the last leaf in the string trailer.
2256 (SINGLE_FMT_ARG, DEFAULT_TOKEN): DONE,
2257 # If present, a ')' symbol is the last symbol in a string trailer.
2258 # (NOTE: LPARS and nested RPARS are not included in this lookup table,
2259 # since they are treated as a special case by the parsing logic in this
2260 # classes' implementation.)
2261 (RPAR, DEFAULT_TOKEN): DONE,
2264 def __init__(self) -> None:
2265 self._state = self.START
2266 self._unmatched_lpars = 0
2268 def parse(self, leaves: List[Leaf], string_idx: int) -> int:
2271 * @leaves[@string_idx].type == token.STRING
2274 The index directly after the last leaf which is apart of the string
2275 trailer, if a "trailer" exists.
2277 @string_idx + 1, if no string "trailer" exists.
2279 assert leaves[string_idx].type == token.STRING
2281 idx = string_idx + 1
2282 while idx < len(leaves) and self._next_state(leaves[idx]):
2286 def _next_state(self, leaf: Leaf) -> bool:
2289 * On the first call to this function, @leaf MUST be the leaf that
2290 was directly after the string leaf in question (e.g. if our target
2291 string is `line.leaves[i]` then the first call to this method must
2292 be `line.leaves[i + 1]`).
2293 * On the next call to this function, the leaf parameter passed in
2294 MUST be the leaf directly following @leaf.
2297 True iff @leaf is apart of the string's trailer.
2299 # We ignore empty LPAR or RPAR leaves.
2300 if is_empty_par(leaf):
2303 next_token = leaf.type
2304 if next_token == token.LPAR:
2305 self._unmatched_lpars += 1
2307 current_state = self._state
2309 # The LPAR parser state is a special case. We will return True until we
2310 # find the matching RPAR token.
2311 if current_state == self.LPAR:
2312 if next_token == token.RPAR:
2313 self._unmatched_lpars -= 1
2314 if self._unmatched_lpars == 0:
2315 self._state = self.RPAR
2316 # Otherwise, we use a lookup table to determine the next state.
2318 # If the lookup table matches the current state to the next
2319 # token, we use the lookup table.
2320 if (current_state, next_token) in self._goto:
2321 self._state = self._goto[current_state, next_token]
2323 # Otherwise, we check if a the current state was assigned a
2325 if (current_state, self.DEFAULT_TOKEN) in self._goto:
2326 self._state = self._goto[current_state, self.DEFAULT_TOKEN]
2327 # If no default has been assigned, then this parser has a logic
2330 raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
2332 if self._state == self.DONE:
2338 def insert_str_child_factory(string_leaf: Leaf) -> Callable[[LN], None]:
2340 Factory for a convenience function that is used to orphan @string_leaf
2341 and then insert multiple new leaves into the same part of the node
2342 structure that @string_leaf had originally occupied.
2345 Let `string_leaf = Leaf(token.STRING, '"foo"')` and `N =
2346 string_leaf.parent`. Assume the node `N` has the following
2353 Leaf(STRING, '"foo"'),
2357 We then run the code snippet shown below.
2359 insert_str_child = insert_str_child_factory(string_leaf)
2361 lpar = Leaf(token.LPAR, '(')
2362 insert_str_child(lpar)
2364 bar = Leaf(token.STRING, '"bar"')
2365 insert_str_child(bar)
2367 rpar = Leaf(token.RPAR, ')')
2368 insert_str_child(rpar)
2371 After which point, it follows that `string_leaf.parent is None` and
2372 the node `N` now has the following structure:
2379 Leaf(STRING, '"bar"'),
2384 string_parent = string_leaf.parent
2385 string_child_idx = string_leaf.remove()
2387 def insert_str_child(child: LN) -> None:
2388 nonlocal string_child_idx
2390 assert string_parent is not None
2391 assert string_child_idx is not None
2393 string_parent.insert_child(string_child_idx, child)
2394 string_child_idx += 1
2396 return insert_str_child
2399 def is_valid_index_factory(seq: Sequence[Any]) -> Callable[[int], bool]:
2405 is_valid_index = is_valid_index_factory(my_list)
2407 assert is_valid_index(0)
2408 assert is_valid_index(2)
2410 assert not is_valid_index(3)
2411 assert not is_valid_index(-1)
2415 def is_valid_index(idx: int) -> bool:
2418 True iff @idx is positive AND seq[@idx] does NOT raise an
2421 return 0 <= idx < len(seq)
2423 return is_valid_index